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Evenmonths after recovery fromCOVID-
19 infection, some people continue to
experience neurological, psychiatric,
and cognitive effects.

Recent extensive research using elec-
tronic health records, cognitive testing,
and neuroimaging has started to clarify
the nature of some of these symptoms.

COVID-19 offers an unprecedented op-
COVID-19 is associated with a range of neurological, cognitive, and mental
health symptoms both acutely and chronically that can persist for many months
after infection in people with long-COVID syndrome. Investigations of cognitive
function and neuroimaging have begun to elucidate the nature of some of
these symptoms. They reveal that, although cognitive deficits may be related
to brain imaging abnormalities in some people, symptoms can also occur in
the absence of objective cognitive deficits or neuroimaging changes. Further-
more, cognitive impairment may be detected even in asymptomatic individuals.
We consider the evidence regarding symptoms, cognitive deficits, and neuroim-
aging, as well as their possible underlying mechanisms.
portunity to follow individuals from acute
infection through to the emergence of
post-viral illness on a broad scale.
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Brain health and symptoms associated with COVID-19
Early in the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), it was appreciated that there could be significant effects
of the infection on the brain [1]. Neurological syndromes were observed most commonly in
hospitalised patients, including delirium, encephalopathy, and stroke [2–4]. An analysis of elec-
tronic health records of >236 000 people who had been infected with COVID-19 showed that
non-hospitalised patients also incurred a significantly higher likelihood of developing psychiatric
conditions, including altered mood, anxiety, insomnia, and psychosis [5].

The estimated incidence of receiving either a neurological or psychiatric diagnosis for the first
time was 11.5% in the first 6 months following infection, and this doubled among patients
with intensive care unit (ICU) admission [5]. Importantly, these figures cannot simply be ex-
plained by systemic effects associated with any respiratory tract infection because the rates
were significantly higher compared to patients with influenza [5,6]. However, some studies
found no difference between COVID-19 and other respiratory tract infections with comparable
disease acute illness severity [7,8]. Some of the elevated risks appear to be transient. After 1–3
months it has been reported that diagnostic rates for stroke, insomnia, and mood and anxiety
disorders gradually return to levels comparable to those of patients with other respiratory tract
infections [9]. Nevertheless, following the observation of the acute impact of COVID-19 infec-
tion on the brain, it soon became clear that there were also symptoms in the chronic phase
[10]. Two years after infection, the risks of cognitive symptoms, dementia, and psychotic dis-
orders were still significantly elevated [9].

The prevalence and persistence of self-reported cognitive symptoms after COVID-19 have been
extensively reported, but the variability in estimates between studies is very large [11–14]. In a
longitudinal study on 766 infected individuals, 36% reported cognitive symptoms in the first
3 months following infection, and those with cognitive symptoms in the first month were twice
as likely to report chronic symptoms at 3 months compared to those without such symptoms
[15]. According to a recent meta-analysis of online surveys, one in five individuals who contracted
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COVID >3 months ago still continue to experience some degree of 'brain fog', including attention
and memory problems [16].

These self-reported cognitive complaints are amongst the most common symptoms of the post-
COVID condition (PCC), also known as 'long COVID' [17]. According to the World Health Orga-
nization clinical case definition, PCC comprises a constellation of symptoms (e.g., cognitive dys-
function, fatigue, shortness of breath) that are still present 3 months after coronavirus infection,
have lasted at least 2 months, affect daily functioning, and cannot be explained by another
cause [18]. Given the heterogeneity of PCC symptoms, it has been proposed that PCC might
not be a unified condition and instead reflects a group of distinct phenotypes [19–22].

Of symptomatic COVID-19 patients, 2.2% experienced chronic cognitive symptoms 3months after
infection, according to a meta-analysis of 1.2 million cases [22]. Recent estimates suggest that 1.7
million UK adults (2.7% of the population) had self-reported PCC in March 2023, and 69% had
symptoms for >1 year [23]. However, the prevalence of chronic cognitive symptoms could be
overestimated in many studies. One study found the prevalence of cognitive symptoms was the
same (70%) regardless of whether individuals had been infected or not [24], highlighting potential
difficulties in interpreting the prevalence of symptoms. It is therefore crucial to consider data from
studies that have objectively measured cognitive function rather than relying on self-report.

Cognitive function in the acute phase
Global, clinical cognitive screening tests were commonly used in the acute phase, namely within 3
months of infection [25–27]. For example, a comprehensive examination of 49 largely non-
hospitalised COVID-19 patients with an average age of 60 years showed lower scores on mini
mental state examination (MMSE) compared to age-matched controls, and 53% were signifi-
cantly impaired in at least one cognitive domain (attention and executive, memory, or visuospatial)
using a more extensive neuropsychological battery 2–3 months after infection [28]. This accords
with a meta-analysis of 24 studies, all using cognitive screening tests, which reported that 52% of
patients overall demonstrated acute deficits, and those aged over 59 years fared worse [26].
However, most of the publications in this analysis focused on hospitalised patients, namely
those with more severe manifestations. Thus, there is likely to be a bias in patient selection.

One might argue that surviving any critical illness can result in long-lasting cognitive impairment
[29], and this reported effect might therefore not be specific for SARS-CoV-2 infection. To ad-
dress this question, a case–control matched study [30] found that, compared to 60 ICU
status-matched uninfected patients, 85 COVID patients had significantly lower Montreal cognitive
assessment (MoCA) scores at 6 months post-discharge, and more COVID-19 patients scored
below the cut-off for mild cognitive impairment.

Some important limitations of conventional clinical screening tools are that they are relatively
crude measures that may not be sufficiently sensitive to detect mild cognitive deficits. They also
do not lend themselves to mass testing or longitudinal research owing to lack of different versions
of tests (to mitigate against practice effects) and the need for face-to-face testing. During the pan-
demic there was great interest in digital cognitive testing in which people complete computerised
tests remotely. Hampshire et al. [31] reported data from 81 337 people who performed an online
suite of cognitive tests. Of these, 12 689 people were verified (n = 518) or suspected to have
COVID-19, and the majority had been infected 2 months previously. The authors found cognitive
impairment scaled with acute COVID-19 respiratory severity: hospitalised patients scored 0.25–
0.45 standard deviations below the mean of the uninfected healthy group, whereas non-
hospitalised patients showed a lesser but still significant reduction in global cognitive score,
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and this could not be attributed to premorbid intelligence or level of anxiety and depression symp-
toms in the weeks before testing. Regardless of acute symptom severity, the most affected do-
mains were semantic analogical reasoning (e.g., 'leaf is to branch' as 'finger is to arm') and
multi-stage planning (measured by the Tower of London test). Box 1 overviews deficits in cogni-
tive functions, such as executive function and memory, in the acute phase of COVID-19.

Other investigations also report that the severity of cognitive impairment depends on the level of
medical assistance needed during the acute SARS-CoV-2 infection [31,32], especially if intensive
care and oxygen support were required [28]. However, the length of hospitalisation has been
shown not to be related to the acute cognitive deficit [33,34]. The association with acute symp-
tom severity has also been reported to be particularly strong in executive dysfunction; one
study objectively measured this using the number symbol coding task and found a correlation
with an index of acute respiratory distress [28].

Cognitive function in the chronic phase
Some COVID-19 survivors may have attention, executive function, and memory deficits for >3
months [28,35–45], and potentially up to 2 years if they have ongoing symptoms [46]. The prev-
alence of chronic cognitive impairment remains unclear among the infected population
[16,47–49]. Importantly, despite the fact that cognitive functions are measured independently,
cognitive impairment in multiple domains is more common than in a single domain [28,38,50].

Overall, the objective testing data indicate that, for the majority of mild-to-moderately infected in-
dividuals, recovery occurs within the first year after infection (Box 2 for the persistence of chronic
cognitive impairment); however, somemay experience some degree of cognitive deficit beyond 1
year, similar to the trajectory of self-reported PCC symptoms [51]. The presence of ongoing
symptoms may also be a key factor: a digital testing study that tracked 101 self-reported PCC
patients for 9 months found no sign of recovery in cognition over this time, and cognitive impair-
ment was still evident even 2 years after infection [46].

Vigilance and sustained attention
In one study on 73 diagnosed PCC patients, ~50% showed significant impairment in detecting
targets on a simple visual task [41]. This is consistent with the fact that concentration difficulty
is among the most reported post-COVID cognitive symptoms [23,52]. However, this attentional
deficit is not only limited to people with ongoing cognitive symptoms but is also present in
young individuals without subjective complaints [36]. An online testing study [36] showed that
53 young individuals who had COVID-19 5 months ago and reported no cognitive symptoms
scored significantly worse on a vigilance test (Figure 1A). After only 3 min, the COVID-19 group
Box 1. Executive dysfunction and memory deficit in the acute phase

Executive dysfunction is a commonly reported effect in the acute stage, especially in patients over 60 years of age with
moderate to severe acute symptoms [33,74,124]. However, it has been difficult to determine the frequency andmagnitude
of acute executive dysfunction because different tasks andmeasures have been deployed. Themost common test used is
the trail-making task (TMT). Impairment on this task has been frequently reported in the acute phase, especially among
people over 50 years of age who had moderate to severe respiratory symptoms [53,125] or cognitive symptoms [126],
but this is much less common in young non-hospitalised cases [127,128]. However, pre-existing illnesses, such as diabe-
tes, may alter the prevalence of cognitive symptoms [129]. More advanced executive functions, such as multi-stage plan-
ning, may also be impaired in some individuals [31].

Infected people have also consistently demonstrated impairment in memory using standard screening tools as well as
specific memory tasks such as free recall of wordlists and recall of drawing complex figures [25,28,79,130,131].
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Box 2. How long does chronic cognitive impairment persist after COVID-19?

Currently, outcomes differ considerably depending on the population assessed and the cognitive tests used, but in
general, 1 year after infection, the majority of mild-to-moderately affected individuals would have a normal global score
on cognitive screening tests. For instance, 9 months after infection, 443 primarily non-hospitalised individuals had normal
mini-mental state examination (MMSE) scores [132], and 4 months after infection, 98% of 120 healthcare workers had a
normal MMSE score [55]. Individuals older than 60 years (n = 1178) also showed normal global cognition compared to their
uninfected spouses (n = 438) 6 months post-infection, measured through telephone interview of cognitive status (TICS)
[133]. In a prospective study of 78 middle-aged residents in a rural village in South America with a pre-pandemic baseline,
Montreal cognitive assessment (MoCA) scores dropped considerably 6months after SARS-CoV-2 infection but recovered
at 18 months [134]. Similarly, 53 young adults in their 30s who were infected >9 months ago performed normally on de-
manding computerised attention andmemory tasks [36]. However, recovery can take >12months, as shown in one online
memory study with >1700 infected adults [37].
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showed a decrease in their ability to sustain attention to detect infrequent targets. The result was
not due to a deficit in target detection because in the same study the COVID-19 group performed
normally in the first 3 min of this attention task and also on tasks that focused on other forms of
attention [36].
Minutes on the task
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Figure 1. Examples of paradigms used in the literature to study the cognitive deficits following COVID-19. (A) Vigilance task designed to assess performance
decrement during sustained visual attention. A single digit was presented for 50 ms every second and participants were instructed to press spacebar when seeing '0'.
Young COVID survivors without ongoing symptoms (n = 53, mean age = 28, mean time from infections = 5 months) showed a significantly larger decrement in
accuracy of detecting the target after 3 min compared to uninfected controls (n = 83, mean age = 29). Adapted from [36]. (B) The trail-making task (TMT) part B
requires participants to connect circles in a specified order as quickly as possible, switching between numbers and letters. Completion time provides a measure of
processing speed and cognitive flexibility. A total of 800 participants aged >50 years completed this task before and after the breakout of COVID-19. Those who had
contracted COVID-19 (n = 401, mean time from infection = 5 months) required a significantly longer time to complete this task compared to uninfected controls. This
suggests a deficit in executive function that becomes worse with greater age. Adapted from [35]. (C) A total of 1706 participants who had COVID-19 1–17 months
previously and 3722 uninfected controls were asked to perform an object memory task. People >25 years of age showed worse performance on this test compared to
their age-matched uninfected controls. Adapted from [37]. In all plots, the shaded area shows 1 standard error.
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Executive functions
One study [49] found that 27% of 200 hospitalised patients who had recovered from severe
COVID-19 still exhibited impairment in the trail-making task (TMT) at 7 months, consistent with
other evidence [40,53]. In another study, among young patients who had ongoing symptoms
for ~1 year, 15% showed significant impairment in the TMT, but this effect was on average smaller
than in age-matched chronic fatigue syndrome (CFS) patients [41]. This effect also seems to be
age-related [35]. A very well-controlled longitudinal study in the UK Biobank compared TMT per-
formance in 800 people to their pre-pandemic performance [35]. Individuals who contracted
COVID-19 but recovered from acute symptoms took significantly longer to complete the task
compared to uninfected controls. This difference persisted even after all hospitalised participants
were excluded, and was especially noticeable on the TMT-B in people aged >60 years
(Figure 1B). However, the same individuals performed normally on a number-coding task which
requires participants to match symbols to digits based on a key provided, demonstrating some
specificity of the TMT finding. Investigations of younger people – regardless of acute symptom se-
verity – have not found any chronic effects on TMT-B performance [54] or on other executive
functions such as cognitive flexibility (Wisconsin card sorting test [43]), multi-stage planning
(Tower of London) [36,40,55]), and visuospatial mental rotation tasks [36,43]. In addition, working
memory is also found to be affected in an online study of 1706 infected people, which also
showed a strong association with age [37] (Figure 1C).

Episodic memory
Episodicmemory appears to be negatively impacted, irrespective of the types of stimuli to be remem-
bered (words or pictures) [27,28,36,42–45,56,57]. These deficits might be observed even in relatively
young andmild cases without ongoing symptoms [36]. For example, in a computerisedmemory task
with simple line drawings of objects, 36 people in their 30swho had noongoing symptomsperformed
normally on the immediate recognition test, but 30min later they forgotmore information compared to
the uninfected controls [36]. The error was caused by a loss of memory details (e.g., remembering
that an object in the study set was a strawberry, but forgetting its exact appearance or orientation).
Despite the small sample size, a strong correlation between this episodic memory deficit and time
since the onset of COVID-19 acute symptoms was found in this young group [36].

Relation of symptoms to objective cognitive impairments
The presence of ongoing cognitive symptoms has been shown to be a strong predictor of objective
cognitive deficits [37,43,46,58]. Based on a recent study, up to 2 years after infection, a moderate
cognitive deficit was still detectable in people experiencing PCC (n = 1768, median age = 58), but
not in those with perceived full recovery [46]. However, this association was absent in a slightly
younger sample (n = 319, mean age = 49) [39]. Further, people without cognitive symptoms
could also show a mild deficit months after infection [36]. Risk factors for cognitive impairments
are overviewed in Box 3.

Impact of vaccination
Numerous studies have now demonstrated that vaccinated people have lower rates of chronic cog-
nitive symptoms than unvaccinated individuals who became infected [59–61] (reviewed in [62]), espe-
cially if they were older [63]. However, to the best of our knowledge, no published research hasmade
use of objective assessment, and therefore the impact of vaccines on the risk of developing new or
changing existing chronic cognitive deficits in COVID-19-infected individuals remains unknown.

Mental health and relationship to cognition
Sleep disturbance, anxiety, andmood disorders can have amajor impact on cognitive complaints
in people [64]. COVID-19 has been linked to a high prevalence of all these symptoms
Trends in Cognitive Sciences, November 2023, Vol. 27, No. 11 1057
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Box 3. Risk factors for chronic cognitive impairment

What are the risk factors for delayed recovery or even progressive cognitive decline?

Severity of acute symptoms

Acute COVID-19 severity is the strongest risk factor for progressive cognitive decline over 1 year, followed by hyperten-
sion, coronary heart disease, and chronic obstructive pulmonary disease, according to a longitudinal study of 1458 in-
fected patients older than 60 years [133]. As in the acute stage, the early chronic cognitive deficit shows a relationship
with acute COVID-19 severity [36,38,44,45,49,58,135]. The cognitive deficit after 9 months, however, is typically unrelated
to acute COVID-19 severity [37,43], but this might vary in different age groups [133].

Acute symptoms

Regarding specific symptoms, intriguingly, individuals with dysgeusia (altered taste) and hyposmia during the acute stage
had less recovery of memory functions after infection compared to those without these symptoms [28,45].

Age

Age also plays a role in chronic cognitive impairment after COVID-19 [35,37]. However, the relationship between age and
cognitive deficits in COVID-19 is far from linear because some evidence points towards worse performance in young and
middle-aged adults compared to older adults (50–64 years) [37,136]. Currently, we cannot exclude the possibility that dif-
ferent mechanisms might underlie cognitive performance in different age groups.

The literature on the impact of COVID-19 on cognition in children and adolescents is less extensive, likely due to a com-
bination of reduced detection rates of SARS-CoV-2, lower prevalence of cognitive complaints, and difficulties in perform-
ing objective cognitive testing [137,138]. The incidence rate for cognitive symptoms at 6 months after infection (n = 185
748) was ~1% in this population, compared to 6% in persons >65 years (n = 242 101) [6]. Although potentially reassuring,
a lack of cognitive symptoms does not always indicate normal cognitive function, and this therefore requires further inves-
tigation.

Older adults (>65 years) are at higher risk of being given a diagnosis of dementia 2 years after the initial infection compared
to younger adults [9]. However, this effect may also be partially explained by the unmasking of pre-existing (undiagnosed)
neurodegenerative illnesses. Hospitalisation with evidence of acute infection has long been known to be associated with
higher rates of dementia diagnosis, beyond SARS-CoV-2 infection [139].

Pre-existing dementia

People with pre-existing dementia have a higher likelihood of experiencing severe COVID-19 (indexed by increased rates
of hospitalisation, ICU admission, or death) [140–142]. A study on 61.9 million adults using electronic health records in the
USA reported that patients with dementia had a twofold increased risk of SARS-CoV-2 infection [141], and a 5.2-fold
higher mortality rate [142] compared to patients without dementia. These suggest a bidirectional effect of neurodegener-
ative disease and SARS-CoV-2 infection on health outcomes [87].

SARS-CoV-2 variants

Preliminary evidence suggests that the specific variant of SARS-CoV-2 may also be an important risk factor. Self-reported
post-COVID condition (PCC) symptoms are more common in individuals infected in the pre-omicron variant era [19,46].
Different variants (wild-type, alpha, delta) might be associated with distinct PCC symptom clusters (n = 9804) [143]. No-
ticeably, brain fog became more prevalent after infection with the delta variant than with the alpha variant [143]. However,
evidence from objective testing remains limited [46].

Trends in Cognitive Sciences
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[6,9,55,58,65]. However, the severity of thesemental health symptoms has not consistently been
shown to correlate with the degree of acute or chronic post-COVID cognitive deficits in studies
with objective testing [31,36,39,58]. One study suggests that, compared to acute severity or
presence of comorbidities, the presence of depression was the factor which had the greatest in-
fluence on cognitive performance [50]. Further, cognitive function and depression both had inde-
pendent negative impacts on different aspects of self-reported quality of life, but in addition they
also interacted significantly to influence these important metrics of PCC (Figure 2). In another
study of patients attending a dedicated PCC clinic on average 5 months after infection (22% pre-
viously hospitalised), the severity of depressive symptoms was significantly associated with the
1058 Trends in Cognitive Sciences, November 2023, Vol. 27, No. 11
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Figure 2. Effects of cognitive functions and depression on quality of life. Impairment on several cognitive domains
(left column) had an impact on different aspects of quality of life (right column), as did the presence of depression.
Adapted from [50].
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degree of cognitive impairment, and this was driven mainly by verbal fluency, attention, and de-
layed recall deficits [56]. Sleep concerns specifically predicted memory disturbance, whereas
anxiety appeared to have no significant impact on cognitive performance [56], although a modest
effect of anxiety on cognition has been reported in a smaller sample [40].

Despite these associations, the nature of such observational studies means that it is difficult to es-
tablish causal, directional relationships between depression and cognitive function. Further, there
is evidence that post-acute COVID-19 cognitive impairment can occur regardless of mental
health symptoms in all acute severity groups [34,36,66]. This is consistent with findings from elec-
tronic health records: mental health symptoms such as anxiety and depression returned to nor-
mal within 2 months, but cognitive symptoms increased for at least 2 years [6]. Clearly,
depression may play a contributory role in impaired cognitive performance, but it is also possible
that post-COVID cognitive deficits and/or other mechanisms (discussed below) may induce de-
pression. Similar issues have also been rehearsed previously in the context of CFS where the ev-
idence does not point to a clear conclusion (discussed in [67]).

Neuroimaging
Understanding the acute and long-term effect of COVID-19 on brain structure might provide
some insights into cognitive symptoms. We focus on evidence from the three most common di-
agnostic methods used in the current post-COVID literature: magnetic resonance imaging (MRI),
fluorodeoxyglucose positron emission tomography (FDG-PET), and electroencephalography
(EEG).

MRI
Acutely, white matter abnormalities have frequently been reported in COVID-19 patients, poten-
tially secondary to micro- and macrovascular insults, infectious, inflammatory, or autoimmune
causes [68–71]. However, even in COVID-19 patients admitted to hospital with acute neurolog-
ical symptoms, MRI is normal in the majority [72]. In one study, diffusion MRI in 20 hospitalised
Trends in Cognitive Sciences, November 2023, Vol. 27, No. 11 1059
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patients revealed a reduction of intra- and extra-axonal volumes and a significant increase in the
free water fraction, suggestive of vasogenic oedema, and this was highest in frontoparietal re-
gions [73]. This type of oedema is often associated with increased permeability of the blood–
brain barrier but is reversible. Another study on 58 hospitalised COVID-19 patients found higher
signal on susceptibility weighted imaging sequences in the thalamus and increasedmean diffusiv-
ity in both the thalamic radiation and sagittal stratum 2–3 months after disease onset [74].

Chronically, the best evidence for structural changes in the grey matter in patients with COVID-19
comes from a large longitudinal UK Biobank study (Figure 3) [35]. This examined 401 people who
had already had a baseline scan before the pandemic, and compared them to 384 uninfected
controls. This study revealed reduced cortical thickness in brain areas functionally correlated to
primary olfactory cortex such as the left parahippocampal gyrus, bilateral orbitofrontal cortex
(OFC), anterior cingulate cortex (ACC), temporal pole, insula, and supramarginal gyrus in those
who had COVID-19 [75]. That study also showed increased mean diffusivity changes in OFC,
ACC, insula, and amygdala 5 months after infection [35]. One year after infection, one small inves-
tigation (n = 22) found that COVID-19 patients had diffusion abnormalities in the genu of the cor-
pus callosum, corona radiata, and superior longitudinal fasciculus, and the corpus callosum was
especially affected in people who had been admitted to ICU [76]. One study on 84 COVID-19 pa-
tients with PCC at 1 year showed reduced hippocampal volumes, particularly in hospitalised pa-
tients, and reported an association between hippocampal head volumes and cognitive
performance across multiple tests [77].
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. Neuroimaging findings. Several different brain regions have been reported to be affected by COVID-19 across several different modalities in some individuals.
The brain regions depicted here represent those most commonly reported. On fluorodeoxyglucose positron emission tomography (FDG-PET), hypometabolism has been
found in frontoparietal regions as well as in other regions including the insula, parahippocampal gyrus, and thalamus. Hyper- and hypometabolism have been described in
the cerebellum and brainstem. On magnetic resonance imaging (MRI), atrophy in several brain regions connected to the temporal and piriform cortex, including the
orbitofrontal cortex (OFC), parahippocampal gyrus, and cerebellar crus II, has been reported. Reduced functional connectivity (FC) between the OFC and the
cerebellum, and between left and right parahippocampal gyrus, has also been described. Reduced white matter (WM) integrity has been reported in several areas,
including the anterior cingulate cortex (ACC), particularly in patients admitted to an intensive care unit (ICU), as well as in the thalamic radiation. Abbreviation: GM, grey
matter; Figure drawn with BioRender (biorender.com).
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An association between cognitive impairment and brain imaging has been found across different
modalities. In a task-related functional MRI study, PCC patients showed greater brain activation
overall when performing a demanding n-back memory task, and this increase in brain activation
predicted the severity of the cognitive symptoms in the patients [77]. A recent multimodal MRI
study on 86 PCC patients who on average were infected 11 months earlier (33% previously
hospitalised) found reduced resting state functional connectivity between the left and right
parahippocampal regions, as well as between bilateral OFC and the cerebellum, and functional
connectivity changes in OFCwere associated with memory performance [75]. Cognitive deficits in-
cluding in executive functions were also found to be associated with grey matter atrophy in these
areas [35,75] and white matter changes [28,71,73]. Besides single brain areas, the impact of mul-
tiple white matter hyperintensities observed in some COVID-19 patients can also contribute to their
cognitive deficits in executive functions, processing speed, and memory [28]. Moreover, mental
health could also be related to abnormal imaging findings in these patients. An investigation of
42 patients who were hospitalised with COVID reported that, at 3 months, severity of depression
was correlated with atrophy in ACC, whereas post-traumatic symptoms were related to ACC
and insular volumes; both symptoms were associated with white matter microstructural damage
in several tracts and with inflammatory markers in blood [78]. These neuroimaging findings echo
the aforementioned complex associations between mental health symptoms and cognition.

FDG-PET
A pattern of frontoparietal hypometabolism on FDG-PET has consistently been reported in COVID-19
patients presenting with acute neurological symptoms [79–83]. Cross-sectional data in the chronic
phase aswell as longitudinal analysis show that this tends to resolve over time, and there wasminimal
or absent residual hypometabolism after ~6months [54,81–83]. Other areas that have been found to
be involved include the thalamus, insula, and medial temporal lobe including the parahippocampal
gyrus [84–86]. The cerebellum, pons, and brainstem have shown either hyper- [79–82] or
hypometabolism [85,86]. Children have been found to show a similar pattern of hypometabolism to
adults [86]. The prominent involvement of a frontoparietal network in FDG-PET imaging would be
consistent with impairments in attention and executive function reported in these patients [87,88].

Overall, the findings from both MRI and FDG-PET show there can be an association between im-
aging abnormalities and cognitive function [28,35,73,75,79]. The true prevalence of brain imaging
abnormalities in people with previous COVID-19 infection is unknown, but it remains the case that
brain imaging is normal in most people with available brain imaging data with past COVID-19
infection, including PCC.

EEG
Individuals with normal MRI scans may still have aberrant cortical activity [28,89]. EEG abnormal-
ities, including generalised slowing and epileptiform discharges, particularly in the frontal region,
are common in individuals after SARS-CoV-2 infection [89–91]. According to two meta-
analyses on 617 and 308 patients conducted early in the pandemic, COVID-19 patients can ex-
hibit abnormal background activity in up to 96.1%of cases [91], and ~68.6%have diffuse slowing
[90], whereas epileptiform discharges were less common (20.3–22.3%). Importantly,
electrographic seizures, unlike clinical seizures, in COVID-19 patients have been found to be sig-
nificantly associated with mortality in one study [92]. Although EEG abnormalities have been doc-
umented in patients without pre-existing neurological conditions [89,92], epileptiform discharges
are increased in patients with pre-existing epilepsy [90].

COVID-19-related encephalopathy is often the major indication for performing EEG, and is asso-
ciated with higher rates of abnormal findings, and frontal EEG abnormalities have been proposed
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as a marker of COVID-19-related encephalopathy [89–91]. Some studies found no link between
EEG abnormalities and cognitive dysfunction [89], whereas others found an association with
performance during tests measuring frontal functions such as the frontal assessment battery
and the TMT [28]. However, one longitudinal investigation at 10 months reported that these
changes normalised over time [28].

Possible mechanisms
Several different mechanisms, by no means mutually exclusive, have been hypothesised to ac-
count for COVID-associated cognitive impairment and changes in brain health, both in the
acute and chronic phases of the disease.

Cerebrovascular factors
MRI scans on COVID-19 patients who showed cognitive deficits or neurological symptoms indi-
cated a high prevalence of cerebrovascular abnormalities, including ischaemic strokes, intracra-
nial haemorrhage, and cerebral microbleeds, which could contribute to cognitive deficits
[68,69,72,93–99]. Damage to the blood vessel endothelium in acute COVID-19 infection is asso-
ciated with a prothrombotic state which results in micro- and macro-thrombus formation [100].
Worse clinical outcomes are reported in patients with pre-existing endothelial dysfunction, such
as patients with systemic hypertension, diabetes, or obesity [101]. The initial trigger could be
direct viral invasion of endothelial cells or indirect inflammatory effects. The exposure of the
subendothelium triggers the coagulation cascade and subsequent platelet activation, leading
to thrombus formation, which ultimately leads to hypoxia and cell damage [102]. The presence
of hypoxic–ischemic lesions has been found to correlate with neurological manifestations of
COVID-19 in a large meta-analysis of 45 autopsy studies [103]. This procoagulatory state then
activates increased production of proinflammatory cytokines including interleukin 6 (IL-6), IL-1,
IL-10, and tumour necrosis factor α (TNF-α). This contributes to disruption of the blood–brain bar-
rier, which in turn increases migration of monocytes from outside the brain and reinforces a pro-
inflammatory state [104]. Age has been found to be the single most important factor in
neuropathology associated with hypoxic and ischemic lesions and reactive neuroinflammation
[103].

Dysregulated autoimmunity and neuroinflammation
SARS-CoV-2 infection triggers the release of immune mediators in the blood which can manifest
as a 'cytokine storm' of elevated levels of proinflammatory cytokines. Cytokine levels correlate
positively with acute COVID-19 systemic severity [105–107], andmight contribute to neurological
complications such as encephalopathy [108]. High levels of cytokines in the blood can also in-
crease blood–brain barrier permeability, leading to increased migration of inflammatory cells
into the brain [104]. Neuroinflammation has been consistently reported in animal and human
studies at autopsy [103,109]. Heightened neuroinflammation in the hippocampus has also
been found to be linked to reduced hippocampal neurogenesis in mouse and hamster models
of COVID-19, and also in human samples [109,110]. Recently, a study using translocator protein
(TSPO) PET reported higher distribution volume (TSPOVT, an index of inflammatory change) in 20
patients with depressive and cognitive symptoms after recovering frommild or moderate COVID-
19 compared to 20 uninfected controls, and this was particularly notable in the dorsal putamen
and ventral striatum [111]. Higher levels of TSPO VT in the dorsal putamen were strongly associ-
ated with slower finger-tapping speed [111].

However, increased neuroinflammation is also found inmice and humans after mild influenza, and
most cytokines normalise over time in animal models [109,110]. Reactive microglia and astroglial
cells together with inflammatory infiltrates represent the most common findings and are found in
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Outstanding questions
Which cognitive deficits contribute to
the symptom of 'brain fog'?

Which risk variables contribute to the
frequency and degree of the post-
COVID chronic cognitive deficit at an
individual level? There is a pressing
need for large-sample, interdisciplinary
investigations.

Do the affected cognitive functions
after COVID-19 all recover eventually?
How is the recovery duration of mental
health symptoms and cognitive deficits
affected by risk variables? Which do-
mains of cognition recover slowest?

How do the different impacts of
COVID-19 interact with each other?
For example, is the chronic cognitive
deficit associated with neuropsychiat-
ric vulnerability?

Are post-COVID cognitive deficits spe-
cific to particular viral variants?

How many different subtypes of
cognitive problems (e.g., different clus-
ters) are there, and how do they differ
in terms of underlying mechanisms?

What is the natural evolution of
abnormalities seen at brain imaging,
and what is their long-term impact on
cognitive function?
44–52% of COVID-19 cases at autopsy, and they are present regardless of detection of viral
RNA, pointing towards a general inflammatory response rather than a consequence of the
virus per se [103]. Only inflammatory infiltrates seem to be associated with rates of neurological
symptoms [103]. The neuroinflammatory marker glial acid fibrillary protein (GFAP) has been
found to be increased in the acute phase of COVID-19 [112,113] but, according to one study
on 175 COVID-19 patients and 45 patients with influenza, levels return to their normal baseline
3 months after infection, and importantly are not different compared to samples with influenza
[113]. Another study on 100 COVID-19 patients at 6 months confirmed that GFAP levels as
well as initial increases in neurofilament light chain (NfL) tended to normalise over time [114]. How-
ever, one cross-sectional study on 84 patients with PCC symptoms at 1 year showed an inverse
relationship between inflammatory cytokines such as CCL11 and time after COVID-19 infection,
whereas other markers such as GFAP and myelin oligodendrocyte glycoprotein (MOG) did now
show such an association [77]. In the same study, increased levels of GFAP and MOG were as-
sociated with higher volumes of several hippocampal subfields, unlike CCL11 and NfL which
showed the opposite relationship. Therefore, although there is strong evidence to suggest that
COVID-19 in the acute phase is related to neuroinflammation, more longitudinal data across dif-
ferent modalities will be necessary to determine whether these effects are long-standing and
whether having chronic PCC symptoms affects the return to baseline of these biomarkers.

Direct viral invasion
SARS-CoV-2 uses its spike protein to bind to angiotensin-converting enzyme (ACE) 2 receptors,
which are found on the surface of cells in many organs including the lungs, heart, blood vessels,
kidneys, liver, and gastrointestinal tract [115]. Although ACE2 receptors are also present on en-
dothelial cells in the brain, there is no substantial evidence that SARS-CoV-2 infects neurons di-
rectly. SARS-CoV-2 might enter the brain via the olfactory bulb, where SARS-CoV-2 protein has
been found in brain vascular endothelium [116]. There is little evidence for the presence of SARS-
CoV-2 viral RNA in the cerebrospinal fluid of living patients [117,118]. The low detection rates of
SARS-CoV-2 viral RNA and proteins in the brain tissue of patients who died acutely from COVID-
19 suggest possible viral contamination during autopsy or detection of haematogenous viral RNA
[100,102,103,116,119,120]. Moreover, there is no difference in detection rate of the virus in brain
tissue between patients with and without neurological symptoms [103]. These findings indicate
that viral invasion of the brain is unlikely to be responsible for long-term symptoms.

Psychological impacts
Psychological responses to illness are well-studied phenomena, although there is great variation
in the way different people deploy strategies to cope with the stress of illness [121]. People who
are depressed or anxious can show evidence of cognitive impairment [122]. A large international
survey of factors associated with psychiatric outcomes compared PCC patients (n = 5638) to in-
dividuals who had recovered from COVID-related symptoms (n = 475) [123]. Although PCC pa-
tients had a higher mental health burden, the majority (57%) did not report experiencing
depression, anxiety, or suicidality. Indeed, there was also no evidence in this study of maladaptive
coping in the PCC group. Nevertheless, it is also clear, from this and the reports discussed in sec-
tions above, that many people with PCC havemental health symptomswhich are also associated
with impaired cognition, although the direction of causality remains to be established.

Concluding remarks
COVID-19 infection can have a negative impact on brain health and cognition in some individuals,
both acutely and months after infection. We have presented data from a range of studies using
electronic health records, community-based surveys, cognitive assessments, and neuroimaging
that reveal both the complexity and limitations of current knowledge in this area. The known risks
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of significant acute and chronic effects on mental health and cognitive function were considered.
Crucially, these impacts are not only limited to people who had severe symptoms of acute illness
or those who experienced long COVID, and can also be evident in milder cases without ongoing
symptoms.

PCC continues to be a global public health concern. Persistent cognitive symptoms are common
after a SARS-CoV-2 infection. However, there are still many important questions regarding the
long-term cognitive effects of COVID-19 that have not been resolved (see Outstanding
questions). Understanding the underlying mechanisms is still in its infancy. It will rely on high-
quality studies that integrate both self-reported symptoms and objective cognitive function test-
ing, as well as specific variables such as virus variants, vaccination status, and pre-existing con-
ditions. Answering these questions will be essential to help clinicians and policymakers design
interventions to treat and possibly treat long-term effects on cognition and brain health.
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