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Obtaining information is a crucial part of normal 
decision-making under uncertainty. For example, decid-
ing where to go out for dinner requires building predic-

tions about how good the food, atmosphere and service will be 
in nearby restaurants. Incorrect predictions can ultimately result 
in poor choices, leading to deviations from the intended outcome 
(for example, a bad dinner). Such disappointing experiences can be 
prevented, however, by spending time to gather information before 
making a decision, in order to reduce uncertainty and improve pre-
dictions. To do this, humans need to solve two key problems. First, 
they need to identify, in a complex, high-dimensional world, what 
constitutes potentially useful information, and devise a strategy to 
extract it efficiently. For instance, should they read online customer 
reviews, ask a friend or check a guidebook? Second, they must set a 
stopping policy that determines when to stop gathering information 
and use the knowledge accumulated to guide their final decision.

Current accounts of active information gathering1–6 are grounded 
in neuroeconomic theories of decision-making7–11. According to this 
perspective, people behave to maximize the expected utility of their 
final decision (that is, how rewarding the outcome of their choice 
is likely to be). A discrete piece of information (sample) is worth 
acquiring in this framework only if the instrumental benefit it pro-
vides outweighs the cost of obtaining it. This instrumental benefit 
is the increase in expected utility that results from making the final 
decision with the information, compared to without it. Such an 
approach has proven useful in understanding why people seek more 
knowledge when sampling is cheap, errors are strongly penalized or 
the information content of individual samples is low1,5,6,12–17. In other 
words, it provides a useful conceptual framework for understanding 
how stopping policies respond to changes in the cost–benefit struc-
ture of the task environment.

Previous investigations of cognitive information sampling have 
largely focused on characterizing such stopping policies. They have 
used simple models in which resources (for example, monetary 
credits) could solely be used towards acquiring more, but crucially 
not better, samples1,5,13,18. However, such an approach neglects the 
fact that, in day-to-day life, not all potential samples are equally 

informative. Instead, a well-chosen piece of information may have 
the potential to strongly resolve uncertainty, while others may be 
irrelevant. It is therefore important to determine which informa-
tion to acquire, in addition to how much, before making a decision. 
Crucially, the process of identifying the best sample to collect may 
require cognitive effort as well as time, adding to a computational 
cost that is currently not accounted for by theoretical models of 
active information sampling19,20.

Two factors that theoretically might contribute to this compu-
tational cost are worth considering in more detail. First, identify-
ing samples that are more informative potentially takes longer and 
thus carries an opportunity cost21,22. In the restaurant example, ask-
ing a friend may provide more useful information than consulting 
a guidebook, but we risk not obtaining that information before din-
ner if it requires texting, then awaiting a response. Here, the oppor-
tunity cost is the potentially useful information missed because 
of the decision deadline. Numerically, it is therefore a function of 
the agent’s sampling strategy (speed and efficiency), as well as the 
task’s cost–benefit and temporal structure. The second factor is a 
potential cognitive effort cost23,24, which arises from mechanisms 
that enhance the amount of information gathered per unit of time25 
(for example, increasing the rate at which candidate samples are 
assessed, inhibiting unhelpful automatic or habitual responses or 
allocating more attentional resources to the search for knowledge). 
For example, if we decide to phone our friend, we might obtain 
more information by turning the conversation towards the features 
of a restaurant that interest us most and paying close attention to the 
responses. The cognitive effort expended in honing in on the most 
valuable information might lead to better decisions but also incur a 
cost in terms of neural resources and/or energy consumption.

We hypothesized that if people discount the computational cost 
expanded from information benefits, active sampling for infor-
mation before decision-making should be more flexible than is 
currently assumed. Testing this empirically requires experimental 
features that are missing from existing paradigms1,13,18,26,27: (1) some 
candidate samples should be more informative than others; and 
(2) it should be non-trivial to find them. Here, we designed a more 
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complex, active information-sampling task that incorporates these 
key features. In our paradigm, people search spatially for informa-
tion, by touching screen areas, before committing to an answer. 
Importantly, some sample locations give more information than 
others, but finding them is not straightforward.

Using this model, we demonstrate, over five separate experi-
ments, that information sampling before decision-making is 
extremely flexible and adapts to contextual constraints. People are 
able to increase the rate at which they accumulate knowledge, either 
by acquiring data faster or by slowing down to select better observa-
tions at each step. Thus, the results demonstrate a speed–efficiency 
trade-off whereby more informative samples take longer to find. 
But, crucially, when under sufficient time pressure (when there is a 
substantial opportunity cost), humans are capable of breaking this 
trade-off, sampling both faster and more efficiently. To account for 
such flexibility, we posit a cognitive control mechanism that arbi-
trates how quickly and efficiently people sample information. In 
our model of cost–benefit evaluation, both speed and efficiency are 
treated as costly, incurring a cognitive effort cost for the individ-
ual. Furthermore, this effort cost relates to subjective self-reported 
fatigue accumulated during active sampling. Taken together, these 
findings show that incorporating a computational (cognitive) cost 
into classical models of active information sampling provides a bet-
ter account of human behaviour before decisions are made under 
uncertainty.

Results
Active information-sampling model. A schematic of the model, 
framed as a game called Circle Quest, is depicted in Fig. 1a. The goal 
was to maximize earnings in the form of credits. Players searched 
for information about the location of a hidden circle (radius = 130  
pixels) by tapping a touchscreen with their index finger. If they 
touched inside the hidden circle, a purple dot appeared; otherwise, if 
they touched outside the hidden circle, a white dot appeared. These 
dots, denoting the results of sampling at various locations, stayed 
on the screen throughout the information-sampling phase and 
until the end of the trial in order to limit memory load. Participants 
started each trial with a certain number of credits (starting credit, 
R0), which decreased by a fixed amount every time they acquired a 
sample (sampling cost, ηs). During the time allocated to sampling 
(tmax), they were free to acquire as many samples as judged neces-
sary, at the rate they preferred, anywhere in the search space. Once 
this time elapsed, individuals were asked to place a blue disk where 
they thought the hidden circle was located. This response was sub-
sequently rewarded according to the following scoring function: 
R0 − (s × ηs) − (e × ηe), where s is the number of samples acquired, e 
is the placement error (in pixels) and ηe is the error cost (linear cost, 
in credits per pixel). Thus, performing well in this task required 
minimizing uncertainty to avoid large error penalties while also 
minimizing sampling-related losses.

Quantifying uncertainty with the expected error. In this model, 
uncertainty pertains to the location uncertainty of the hidden circle 
in the search space. It was quantified objectively as the expected 
error (in pixels), that is, the error an ideal observer is most likely to 
obtain by placing the blue circle at the best possible location given 
the observations on the screen (Fig. 1b; details in Supplementary 
Methods). This formalism is more suited than the entropy of the 
posterior belief (another measure of uncertainty quantifying the 
size of the solution space on a log scale) because it has direct instru-
mental implications in the game (EV = R − (ηe × EE), where EV is 
the rational expected value and ηe × EE is the expected error pen-
alty). Because the expected error is a rather abstract dimension that 
may be difficult to intuit, we first asked, using a simplified counter-
part of the game, whether participants were able to manipulate this 
variable within a decision-making problem.

In experiment 1a, eight samples were presented on the screen 
(four white and four purple) and individuals (n = 48; mean 
age = 24.52 years; s.d. = 3.75 years; Extended Data Fig. 1) simply had 
to rate, on a visual analogue scale, how well they thought they could 
localize the hidden circle (Fig. 2a; see Methods). In this task, there 
was no active sampling; instead, participants simply made judge-
ments on a single snapshot, which provided them with information. 
Uncertainty (the expected error) was manipulated experimen-
tally by varying the geometrical distribution of the samples. On a 
trial-by-trial basis, directly after their confidence rating, the number 
of available credits appeared (40, 70, 100 or 125 credits) and indi-
viduals had to indicate whether or not they would accept the offer to 
place the blue disk for this combination of reward and uncertainty. 
To incentivize authentic choices, participants were instructed that 
at the end of the experiment they would have to play (that is, place 
the blue circle and win credits according to their performance) for a 
fixed number of trials, selected from the preferences they expressed.

Uncertainty ratings were calculated by sign flipping and 
z-scoring confidence ratings for each individual. The objective 
uncertainty (expected error) showed a significant linear relation-
ship with these subjective ratings (linear mixed model (LMM); 
standardized β = 0.80; 95% confidence interval (CI) = (0.76, 0.83); 
t(8062) = 49.89; P < 0.001; Supplementary Table 1 and Fig. 2b), sug-
gesting that participants were reporting an internal variable that 
resembled the expected error. This metric in fact provided a good 
predictive estimate of actual placement errors (Supplementary 
Fig. 1). Furthermore, as demonstrated by logistic linear model-
ling of accept–reject decisions, individuals correctly weighed the 
expected error against reward in order to decide whether or not to 
place the blue circle (mixed-effects logistic regression; main effect 
of expected error: standardized β = −2.53; 95% CI = (−2.80, −2.27); 
t(8060) = −8.57; P < 0.001; main effect of reward: standardized β = 1.87; 
95% CI = (1.49, 2.26); t(8060) = 7.04; P < 0.001; Supplementary Table 1 
and Fig. 2b,c). This control task therefore confirmed that human 
participants were able to report the expected error as well as use it 
to inform decision-making within our model.

A speed–efficiency trade-off constrains sampling behaviour. 
In a separate, counterbalanced session, the same participants also 
underwent the active version of the task, which was the main focus 
of our study (experiment 1b; see Methods). In this condition, they 
were asked to actively sample the search space before deciding 
where to place the blue circle in order to win credits (Fig. 1a). Both 
R0 and ηs were manipulated in a two-by-two block design (ηe and tmax 
were fixed; Extended Data Fig. 2).

The game was designed such that at any given stage some can-
didate samples carried useful information (that is, they greatly 
reduced the expected error) while others did not (Extended Data 
Fig. 3). For example, sampling between dots of the same colour or 
more than two radiuses away from a purple dot did not provide any 
new information (that is, change in expected error = 0). As a result, 
the expected error could decay more or less sharply over succes-
sive observations, depending on the quality of the agent’s choices 
of sampling locations. We quantified this dimension of behaviour 
(sampling efficiency) with the information extraction rate, α, which 
was estimated separately for each trial (see Methods; Fig. 1c). This 
parameter quantifies the rate of exponential decay of uncertainty 
over successive samples (Extended Data Fig. 4). Throughout the 
paper, a greater value of α represents a sharper expected error 
reduction from one sample to the next (that is, more efficient infor-
mation gathering).

Unlike in many existing experimental paradigms1,5,13,18,26,27, α was 
not imposed or fixed in our task. Instead, participants had agency 
over the efficiency of their own exploration strategy. At any stage 
of the search, they could choose to deliberate longer to acquire a 
sample at a more informative location, which in turn would result in 
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a sharper reduction of uncertainty. Regardless of the experimental 
variable manipulated (R0 or ηs), a slower acquisition rate (that is, a 
greater inter-sampling interval, ISI) was indeed systematically asso-
ciated with more efficient sampling in experiment 1b (LMM; main 
effect of the natural log (ln)-transformed ISI on α: t(4606) = 10.16; 
P < 0.001; Supplementary Table 2 and Fig. 3a). Further analysis 
of the strategies underlying exploration behaviour suggested that 
time-dependent efficiency benefits involve both the inhibition of 
unhelpful automatic sampling actions and a closer approximation 
of the optimal search algorithm (details in Supplementary Results).

A model of active sampling penalizing speed and efficiency. The 
existence of the trade-off illustrated in Fig. 3a allowed us to ask the 
central question of this paper: how do humans choose the speed and 
efficiency at which to gather information before making a decision? 
Furthermore, when do they prioritize speed over efficiency (or vice 
versa)? And can they sometimes prioritize both?

From an optimal control28–30 perspective, solving this problem 
requires assigning a subjective cost to both sampling speed and effi-
ciency. Figure 4 illustrates this framework. The expected utility is 
calculated as the reward available (remaining credits = R0 − (ηs × s)) 
minus (ηe × EE) minus a cumulative cognitive effort penalty (ηc × s). 
We posit that the rate at which this cognitive effort penalty grows 
over successive samples (ηc) may be a function of the sampling speed 
(1/ISI) and/or efficiency (α). Within this framework, a rational  

decision maker chooses the course of action (a combination of sam-
pling speed, efficiency and extent) that maximizes return (that is, 
the expected utility at the time of the decision). In experiment 1b,  
an increase in R0 should therefore not affect behaviour much 
because it merely influences the magnitude of the expected utility 
but not the course of action required to maximize it. By contrast, an 
increase in ηs should act as an incentive to sample less, slower and 
more efficiently, to compensate for the additional loss incurred at 
each step of the search.

The raw behavioural data in experiment 1b were qualitatively 
consistent with the predictions of this framework (Fig. 3b–d). 
When acquiring samples was more expensive, participants indeed 
explored less extensively, choosing to make fewer samples (LMM; 
main effect of ηs on the number of samples acquired: t(4604) = −18.64; 
P < 0.001; Supplementary Table 3 and Fig. 3d). Remarkably, they 
also slowed down their exploration (LMM; main effect of ηs on the 
ln-transformed ISI: t(4604) = 13.83; P < 0.001; Supplementary Table 4;  
Fig. 3b) and became more efficient, as indexed by α (LMM: 
main effect of ηs on ln-transformed α: t(4604) = 2.54; P = 0.011; 
Supplementary Table 5; Fig. 3c). Participants also showed a very 
small but significant sensitivity to the starting credit: they sampled 
slightly faster (LMM; main effect of R0 on the ln-transformed ISI: 
t(4604) = −3.94; P < 0.001; Supplementary Table 4 and Fig. 3b) and 
more extensively (LMM; main effect of R0 on the number of sam-
ples acquired: t(4604) = 7.08; P < 0.001; Supplementary Table 3 and  
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Fig. 3d) when more reward was available. This sensitivity effect 
should not exist if economical variables are represented veridi-
cally (rational decision maker) and may instead reflect the use of 
a nonlinear utility function. For completeness, the effects of all of 
the experimental variables on the placement error and score are 
reported in Supplementary Tables 7 and 8.

To formally assess whether positing a cognitive effort cost in 
terms of sampling speed and efficiency was indeed required to 
explain human behaviour quantitatively in our task, we fitted vari-
ants of our proposed modelling framework to individual datasets. 
Model fitting required the introduction of free parameters to the 
framework, estimated at the individual level. All of the models 
included two free weights, we and ws, which quantified the influ-
ence of information-related benefits and the sampling cost to the 
expected utility, respectively (Fig. 4b; see Methods). The reference 
model (model 1) included no cognitive effort cost at all and was 
in effect similar to standard views that do not account for this fac-
tor. Because it is known that humans often exhibit nonlinear utility 
functions when deciding under uncertainty11, as suggested here by 
the small sensitivity to the starting credit (Fig. 3b–d), we first evalu-
ated a model with a power term on the sampling cost (model 2). 
In this model, the sampling speed and efficiency were not penal-
ized, but the contribution of sampling costs to the expected utility 
could increase or decrease nonlinearly as a function of the number 
of samples acquired (details in Methods). This was used as a second 
reference model to check whether a nonlinear utility function could 
account for the data in the absence of cognitive effort cost.

The subsequent models (models 3–14) evaluated the four 
classes of cognitive effort cost depicted in Fig. 4c: linear, quadratic, 
exponential and sigmoid. Thus, they differed with respect to how 
sampling speed (1/ISI) and efficiency (α) were penalized. Note 
that exponential and logistic cost functions required an extra free 
parameter relative to linear and quadratic ones (see Methods and 

Extended Data Fig. 5). To avoid over-fitting by overly complex mod-
els, a veridical specification of economic variables was used when a 
cognitive effort cost was included (that is, there was no power term 
on sampling cost in models 3–14). For each class of cost function, 
three versions of the model were built, based on whether speed, effi-
ciency or both were penalized. The free weights wspeed and wα quan-
tified how severely the sampling speed and efficiency, respectively, 
were penalized within the cognitive effort cost function. The latter 
also included a free intercept, w0. Free parameters were estimated 
separately for each individual dataset using a maximum (multi-
variate) likelihood procedure that was implemented in MATLAB 
with Bayesian adaptive direct search31. Model comparison was car-
ried out with the Bayesian information criterion (BIC), which was 
chosen for its stringent penalization of model complexity. A smaller 
BIC indicates a better trade-off between model fit and complexity.

In the absence of a cognitive effort cost, positing a nonlinear 
utility function provided a better account of the data than a purely 
rational specification (model 2 versus model 1: ΔBIC = −1,036;  
Fig. 5a). However, this was a rather small explanatory power benefit 
compared with those observed with models including a cognitive 
effort cost (models 3–14). Overall, the winning model (model 8)  
penalized for both speed and efficiency using a quadratic cost func-
tion (model 8 versus 1: ΔBIC = −22,779; Fig. 5a). The winning  
cognitive effort cost function was:

ηc(ISI, α) = w0 + wspeed ×
1

ISI2 + wα × α
2 (quadratic) (1)

Thus, as expected, positing the existence of a cognitive effort 
cost, due to both a cost of speed and a cost of efficiency, improved 
our ability to explain participants’ choices of sampling speed, effi-
ciency and extent in experiment 1b (see Supplementary Fig. 2 for 
other models that did not outperform model 8).
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A potential limitation of the winning model is that, unlike in 
simple motor tasks32, the intrinsic relationship between speed and 
efficiency is poorly understood here. As a result, the addition of the 
degrees of freedom we proposed might merely reflect the need for 
the model to incorporate a specification of this relationship, rather 
than a true cognitive effort cost. The last two sections provide evi-
dence in favour of the existence of a true cognitive effort cost that 
influences active information sampling.

Efficiency penalties reflect a cognitively effortful process. To seek 
independent confirmation that the cost introduced in our frame-
work indeed captures an effortful process, participants were asked 
to rate, on a visual analogue scale, how tired they felt throughout 
the experimental session in experiment 1b (see Methods). On aver-
age, fatigue built up linearly over successive task blocks (LMM; 
main effect of the block on fatigue ratings: t(1150) = 4.16; P < 0.001; 
Supplementary Table 9 and Fig. 6a). Importantly, the amount by 
which it increased showed a significant association with the con-
tribution of efficiency to individuals’ cognitive effort cost (wα, as 
extracted through model fitting; see Methods). Those participants 
in whom increasing the efficiency was subjectively more costly 

(high wα) also suffered a greater increase in subjective fatigue as a 
result of performing the task (standardized β = 0.49; 95% CI = (0.17, 
0.80); t(43) = 3.13; P = 0.0032; robust multiple linear regression con-
trolling for w0, wspeed and experiment duration; Supplementary Table 
10 and Fig. 6b). By contrast, those for whom increasing the sam-
pling efficiency was less penalized became less tired over the course 
of the experiment. Performing the analysis on z-scored ratings did 
not change the conclusion (Supplementary Tables 9 and 10). Thus, 
the efficiency cost introduced in our modelling framework captures 
an effortful process that was meaningfully related to how subjective 
fatigue developed throughout the task.

Breaking the speed–efficiency trade-off under time pressure. A 
second way to adjudicate whether the speed–efficiency trade-off 
we uncovered involves a cognitive effort cost is to ask whether it 
is breakable under certain experimental conditions. If the trade-off 
solely reflects the fact that sampling efficiency is naturally a func-
tion of speed, participants should be constrained to manipulat-
ing these two dimensions in an anti-correlated fashion. In other 
words, sampling faster comes at the cost of efficiency, and vice 
versa. If, alternatively, the trade-off emerges from a cognitive effort 
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were generated by sliding, for each subject and condition separately, 25% quantile bins of ISI and computing the mean α for each bin. The shading shows 
the group s.e.m. b–d, Participants sampled slower (b) and more efficiently (c) but less extensively (d) when acquiring data was more expensive (high 
ηs (pink) versus low ηs (blue)). In contrast, a larger starting credit led to a small increase in the sampling speed and the amount of data acquired but 
had no significant effect on efficiency (high versus low R0). Points and error bars show group means ± s.e.m. Asterisks show significant effects (vertical 
bars = main effect of ηs; horizontal bars = main effect of R0; P < 0.05). Full statistical details are reported in Supplementary Tables 2–6.
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cost, under sufficient experimental pressure, participants should 
be able to increase speed without sacrificing efficiency, or vice 
versa, or even increase both at the same time. Note that these two 
hypotheses are not mutually exclusive and the key prediction is 
that of a breakable trade-off if a cognitive effort cost contributes to 
information-sampling behaviour.

To test whether the speed–efficiency trade-off could be broken 
in some conditions, the four experimental variables (R0, ηs, ηe and 
tmax) were manipulated in isolation in four separate experiments 
(experiments 2–5; n = 79 participants divided into four groups; 
mean age = 25.13 years; s.d. = 4.05 years; see Methods and Extended 
Data Figs. 1 and 2). Full statistical analysis of sampling behaviour 
for these experiments is provided in the Supplementary Results 
(Extended Data Fig. 6). None of the economic variables (R0, ηs 
and ηe; experiments 2–4) led to violations of the speed–efficiency 
trade-off (Fig. 7). That is, even when they adjusted speed and effi-
ciency in response to changes in ηs (Figs. 3a and 7), individuals 
remained confined within a fixed anti-correlation between the two. 
This was evidenced by the disappearing of the effect of ηs on α when 
controlling for sampling speed in experiment 3 (LMM; main effect 
of ηs on ln-transformed α: t(1918) = 3.97; P < 0.001; Supplementary 
Table 5; main effect of ηs on ln-transformed α while controlling for 
ln-transformed ISI: t(1917) = −0.60; P = 0.55; Supplementary Table 6; 
also observed in experiment 1b).

By contrast, time pressure (small tmax) acted as a drive for partici-
pants to break the speed–efficiency trade-off. In experiment 5 (n = 19 
participants), the time available for people to sample before making 
their final decision (tmax) was either 18 s (as in the previous experi-
ments) or 14, 10 or 6 s (Extended Data Fig. 2). Compared with experi-
ments in which economic variables were individually manipulated (R0, 
ηs and ηe in experiments 2–4; n = 60 participants), players under overall 
heightened time pressure sampled on average not only faster (LMM; 
contrast experiment 5 versus experiments 2–4 for ln-transformed 
ISI: F(1, 7580) = 47.65; P < 0.001) but also more efficiently (LMM; con-
trast experiment 5 versus experiments 2–4 for ln-transformed α: 
F(1, 7580) = 5.26; P = 0.022; Fig. 7a). In other words, they broke the  
speed–efficiency trade-off observed in previous experiments.

Because this result relies on a between-group comparison, we 
checked that it could not be accounted for by inter-individual dif-
ferences in IQ (Raven’s progressive matrices33) or self-reported 
motivation indices of apathy (apathy motivation index34) and 
impulsivity (Barratt impulsiveness scale-11; ref. 35). Including these 
external measures within the previous analysis made no differ-
ence to the result (LMM; contrast experiment 5 versus experiments 
2–4 for ln-transformed ISI while controlling for questionnaires: 
F(1, 7577) = 48.30; P < 0.001; contrast experiment 5 versus experiments 
2–4 for ln-transformed α: F(1, 7577) = 4.82; P = 0.028). Furthermore 
(and crucially), even within experiment 5, there was evidence of a 
breaking of the speed–efficiency trade-off at the within-individual 
level. A shorter tmax led to faster sampling (LMM; main effect of tmax 
on ln-transformed ISI: t(1822) = 11.71; P < 0.001; Supplementary Table 
4) with no significant loss in terms of efficiency (LMM; main effect 
of tmax on ln-transformed α: t(1822) = −0.02; P = 0.98; Supplementary 
Table 5). This time, when controlling for sampling speed in the anal-
ysis, α showed a significant increase with shorter tmax (LMM; main 
effect of tmax on ln-transformed α while controlling for ln-transformed 
ISI: t(1821) = −3.86; P < 0.001; Supplementary Table 6).

Taken together, the results demonstrate that participants could 
break the speed–efficiency trade-off, sampling both faster and more 
efficiently. This qualitative feature can be seen as a direct manifesta-
tion of the existence of cognitive effort cost (Fig. 4). Formal model 
comparison for experiments 2–5 confirmed this conclusion, repli-
cating the results of experiment 1b. Once again, human performance 
was best explained when positing the existence of a quadratic cogni-
tive effort cost penalizing both speed and efficiency (model 8 versus 
model 1: ΔBIC = −37,800; Fig. 5b and Extended Data Fig. 7). Taken 
together, our results suggest that the way humans seek knowledge 
to guide their decisions is shaped not only by the economic costs 
and benefits of information, but also crucially by the cognitive effort 
expenditure involved in seeking this information.

Discussion
Modern theories of active sampling assume that the brain optimizes 
the amount of information needed before decision-making on the 
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basis of the costs and benefits of resolving uncertainty. Accordingly, 
informative samples are worth acquiring only when the subjective 
benefits they provide outweigh the cost of obtaining them. This 
simple axiom has proven extremely powerful in explaining how 
much information people seek before decision-making1,5,6,12–17, and 
provides a theoretical bridge to other types of motivated behav-
iours such as foraging4,36,37. However, a natural key question is: what 
do people treat as costs and benefits during active information 
sampling?

Here, we focused on one cost whose contribution has been elu-
sive so far—the cognitive effort cost19,20. We hypothesized that if the 
brain discounts the cognitive effort expended from information 
benefits, active sampling behaviour should be more flexible than 
is currently assumed. More specifically, if finding more informa-
tive samples comes at an extra cognitive cost, people should search 
fast and efficiently only when pressured by task constraints. Using 
a complex active sampling experimental paradigm, we showed that 

humans indeed flexibly adjust the amount of cognitive resources 
they allocate to active sampling, in response to economic and time 
pressures. They sample more efficiently but slower when the eco-
nomic losses incurred increase (experiment 1b and 3), and are able 
to break this trade-off under time pressure, sampling both faster 
and more efficiently (experiment 5; Fig. 7).

To account for this flexibility, we posited the existence of a cog-
nitive control mechanism22,38 that determines how quickly and 
efficiently to sample information. Importantly, in this cost–ben-
efit evaluation, both speed and efficiency are treated as costly. 
Incorporating this notion into a standard information-sampling 
model explained human behaviour better than simpler models. 
Further confirmation of the psychological validity of our frame-
work was provided by the significant relationship between sub-
jective fatigue reports and the model-derived cost of efficiency  
(Fig. 6). These findings have some resonance with existing behav-
ioural theories that invoke cognitive effort to explain why consumers 
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do not compare products that differ along multiple dimensions39, or 
why they do not read contracts40. Within a very distinct situation 
(one in which people have to actively sample their environment 
in order to reduce uncertainty about a spatial dimension) we have 
demonstrated that similar principles may apply. Crucially, however, 
the model provided here is quantitative and accounts for changes in 
behaviour (that is, it generates quantifiable predictions of sampling 
behaviour that are testable experimentally).

Consistent with current theories of control allocation in other 
domains30,41, our results converged on the view that the brain actu-
ally penalizes fast and efficient information sampling, thereby pro-
moting what is effectively sub-optimal exploration in the absence 
of strong environmental pressure. It was evident that under greater 
time pressure, individuals could sample faster and more efficiently, 
but chose not to do so when there was a longer deadline (Fig. 7). 
There are at least three possible reasons why such a mechanism 
might exist: metabolic cost, shared computing resources and reli-
ability testing. First and foremost, fast and efficient sampling might 
increase metabolic consumption because of additional neural 
resources requirements (for example, a higher neural firing rate42, 
optimization of brain network organization43,44 or more efficient 
information processing25,45). An indirect proxy for such a possible 
increase in (metabolically costly) processing demands was provided 
by the analysis of choices of sampling location, which supported the 
flexible switching between search algorithms of various computa-
tional complexity46,47 (see Supplementary Results).

The second explanation is that, because other cognitive processes 
also depend on the same shared limited neural resources, prioritiza-
tion of one process might negatively impact on the others, result-
ing in an opportunity cost in terms of unprocessed task-unrelated 
stimuli22. In this context, sub-optimal sampling performance might 
leave room (capacity) for parallel processing of other potentially use-
ful information. Finally, although it impinges on search efficiency, 
there might be indirect benefits to acquiring apparently uninforma-
tive, confirmatory samples48. Indeed, they provide timely checks of 
the reliability of the information source that can only be performed 
where the agent has perfect knowledge over what the outcome 
should be (that is, null entropy). Challenging what is already known 
might confer an ecological advantage in non-deterministic environ-
ments where the trustworthiness of past and future observations 
may drift over time.

The computational framework used throughout this paper 
assumes that individuals choose how to explore (that is, how quickly, 
efficiently and extensively to sample) on the basis of internal simu-
lations of what the future might hold for all alternative courses of 
action—or at least a simplified, representative sub-sample of them49. 
This principle is well-establish within the sensorimotor control50 and 
goal-directed51 literature. Deciding within this strategy space there-
fore requires metacognitive abilities52,53 that may only be acquir-
able through experience (for example, an expectation of the actual 
uncertainty reduction for a given internally selected efficiency, α; an 
expectation of the actual error for a response under a certain uncer-
tainty level). It is possible that this meta-knowledge may, to a cer-
tain extent, be learnt online as participants try out various strategies 
(see Supplementary Information for a visualization of behaviour as 
a function of task exposure). This idea is compatible with a recent 
account of cognitive control in which a reinforcement meta-learner 
learns how to select behavioural states (for example, physical/cogni-
tive effort) through error-based updating coupled with value-based 
action selection54. Our experimental paradigm could therefore be 
used in the future to investigate the computational architecture 
underlying de novo learning of a cognitive effort cost function.

Previous information sampling tasks (for example, the card 
sampling task18, tile flipping task1, beads/urn task26 and dart/fish-
ing task5) could not isolate cognitive effort cost from mere eco-
nomic sampling cost because participants had little to no control 
over the efficiency of their search (here parameterized as α). If all 
candidate samples are expected to reduce uncertainty by the same 
amount, regardless of the time or cognitive effort spent choos-
ing them, active sampling becomes solely about whether or not to 
sample (that is, when to stop). Cognitive effort needs to confer an 
instrumental advantage for it to be traded against other resources41. 
However, it is worth emphasizing that in the simpler instance 
where α is constant, our active sampling model actually reduces to  
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Fig. 6 | The cost of efficiency is associated with fatigue development. 
a, In experiment 1b, participants (n = 48) rated how tired they felt 
throughout the experimental session. The average rating during the 
exposure task (blocks −3 to −1) was used as the baseline fatigue, which 
was subtracted from subsequent ratings for normalization purposes. On 
average, fatigue increased linearly over successive blocks (main effect 
of block on fatigue ratings: t(1150) = 4.16; P < 0.001). Bars and error bars 
show group means with 95% confidence interval. b, The cost of efficiency 
(wα) was associated with the increase in fatigue observed as a result of 
the experimental session (standardized β = 0.49; 95% CI = (0.17, 0.80); 
t(43) = 3.13; P = 0.0032; robust multiple linear regression controlling for 
w0, wspeed and experiment duration). The scatter plot shows the mean 
normalized fatigue rating in the last experimental block (y -axis) as a 
function of the cost of efficiency (wα), controlling for task duration, w0 and 
wspeed (task duration, wα and wspeed were ln-transformed for normalization 
purposes). The colouring shows the contribution of individual data points 
to the robust multiple linear regression (MLR) (multivariate outliers are 
downweighted). The solid line and error shading show the linear regression 
line with 95% confidence interval. Full statistical details are reported in 
Supplementary Tables 9 and 10.
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previous accounts5,17 (Fig. 4). In contrast, if agents have control over 
the informativeness of individual samples, as in the active sampling 
task introduced here and most real life scenarios, optimal allocation 
of computational resources becomes a central problem, which our 
model offers a solution to.

Our study has three main limitations. First, the task relies heavily 
on motor performance, both to sample the search space and to pro-
duce a response at the end of every trial (Fig. 1a). Inter-individual 
differences in motor abilities may affect performance in ways that 
are not (or wrongly) captured by the model (Fig. 4). Although 
this source of variance is likely to be negligible in the population 
of young healthy adults tested here, it may become a more signifi-
cant confound in certain age groups or clinical populations. Second, 
the definition of uncertainty used throughout this work (expected 
error) relies on the assumption that people were able to use all of 
the information that was available in the visual display. However, 
it can be argued that the level of uncertainty depends not only on 
the information presented (that is, the visual display) but also the 
agent’s ability to use this information (that is, which solution they 
select within the solution space). Thus, for the same visual display, 
an individual who is well able to identify the best solution within 
the solution space should rightly expect a lower error than an indi-
vidual who typically picks worse solutions. For simplification pur-
poses, and because the expected error provided a good estimate of 
actual placement errors (Supplementary Fig. 1), this layer of com-
plexity was omitted in the present work. Lastly, the model devel-
oped here assumes a constant sampling speed and efficiency within 
a given trial and therefore cannot account for within-trial effects  

(for example, speeding up or slowing down as individuals get closer 
to the decision deadline). Considering within-trial effects may 
allow future studies to better characterize dynamic decision pro-
cesses unfolding during the exploration. More specifically, it may 
enable the segregation of two distinct decisions: (1) whether or not 
to sample; and (2) where to sample.

In conclusion, the results presented here identify cognitive effort 
as a central cost that the brain trades off against reward during active 
information sampling before decision-making under uncertainty. 
The active sampling experimental model introduced here, together 
with our modelling approach, offers a compact way to quantify the 
contribution of this cost.

Methods
Participants. All participants provided written informed consent and the study 
was approved by the University of Oxford ethics committee. Sample size was 
determined a priori based on counterbalancing constraints and previous studies 
with similar objectives5,55,56. Recruitment took place via the Oxford Psychology 
Research participant recruitment scheme website (https://opr.sona-systems.
com/) and via online study advertisement. Participating in an experiment was a 
criterion of exclusion for the other experiments, such that there was no overlap in 
participants between experiments 1–5. Volunteers were predominantly university 
students and young professionals. None of them reported taking psycho-active 
drugs or having a personal history of a neurological or psychiatric condition.

Experiment 1 included 48 participants (24 females); experiments 2–4 included 
20 participants each (ten females per experiment); and experiment 5 included 19 
participants (ten females). Thus, in total, 127 different participants were tested in 
this work. Demographics and participant characteristics are reported in Extended 
Data Fig. 1. In experiment 1, prospective volunteers (148 individuals volunteered) 
were selected based on their motivation level, gender and age, to ensure a large 
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Tables 4–6.
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spread of motivational levels. The online screening questionnaire included the 
apathy motivation index (AMI), a validated self-report index of apathy and 
motivation34, and demographics information (gender, age, years of education, 
handedness, medication and personal history of neurological or psychiatric 
conditions). No participant dropped out after inclusion and all tested participants 
were included in the analysis.

Apparatus. All of the tasks were presented on a 17-inch touchscreen PC 
using MATLAB version 2018a (MathWorks; https://uk.mathworks.com) and 
Psychtoolbox57,58 version 3. Participants sat in a quiet room within reaching 
distance of the screen (~50 cm). An experimenter was present in the room at all 
times during behavioural testing.

Active information-sampling task (Circle Quest). The goal of the Circle Quest 
task was to win as many credits as possible. Participants were instructed that the 
visual display contained a purple circle that was hidden behind a circular grey 
mask (search space). The size of the hidden circle (radius = 130 pixels; area = 5.80% 
of the search space) was displayed on both sides for reference. The number of 
credits that could be won by perfectly localizing the hidden circle was displayed 
on the side at all times and decreased every time participants touched the screen 
during the sampling phase. This quantity represented an endowment from which 
sampling and error costs were subtracted. When manipulated, ηe was visually 
depicted on the side as a progress bar with the words ‘Scoring severity’ at the top 
(experiment 4). This progress bar could contain one, two, three or four squares, 
corresponding to an error cost of 0.5, 1.5, 1.9 or 2.6 credits per pixel, respectively. 
This could change from one trial to the next but remained constant within a given 
trial. Finally, when manipulated, a timer representing the remaining time allocated 
to the search was displayed on both sides of the screen (experiment 5). This took 
the shape of a timer that filled up clockwise.

Information about the location of the hidden circle could be gathered by 
tapping the screen. If participants touched inside the hidden circle, a purple dot 
(radius = 4 pixels) appeared. If they touched outside the hidden circle, a white 
dot appeared. Trials comprised two phases. During the active sampling phase, 
participants could collect as many samples as they wanted, at any location inside 
the search space. They were instructed that they could stop at any moment but 
had to wait until the end of the allocated time before making their final response. 
A single purple dot was displayed on the screen at the beginning of this phase, to 
act as an initial hint and shorten the length of the search. The location of this first 
purple dot was drawn randomly from inside the hidden circle and was always at 
least 260 pixels away (the diameter of the hidden circle) from the edge of the search 
space, to ensure it always carried the same amount of information (expected error 
at the start of the search = 86.67 pixels). The number of credits available decreased 
every time participants acquired a sample. At the end of the sampling phase, a 
blue disk of the same size as the hidden circle (radius = 130 pixels) appeared in 
the middle of the screen. Participants then had 6 s to drag it on top of where they 
thought the hidden circle was. Finally, the score was presented. This was calculated 
using the formula reward = R0 − (s × ηs) − (e × ηe). Participants won all of the 
remaining credits (R0 − (s × ηs)) minus a penalty reflecting how far they placed the 
blue disk from the actual hidden circle (e × ηe). In other words, there were two ways 
of losing credits in this task: (1) by sampling information; and (2) by mis-localizing 
the hidden circle. The duration of each trial was experimentally set such that 
participants could not complete more trials by sampling less/faster or placing the 
blue circle quickly.

Passive decision task. To characterize the extent to which participants were 
sensitive to the number of credits and expected error on offer, we designed a 
version of the task in which these two variables were experimentally manipulated 
on a trial-by-trial basis (Fig. 2a). The design of this task was inspired by 
other decision-making tasks developed in the laboratory55,59–61. This task was 
counterbalanced with the active sampling version in experiment 1.

First, participants saw dot samples on the screen. All trials contained four 
positive (purple) and four negative (white) samples. The uncertainty (expected 
error) was manipulated by varying the spatial configuration of these samples. 
For example, the expected error was greater when the positive samples were 
clustered together as opposed to spread out. The same set of stimuli were used for 
all individuals but the order of presentation was randomized. The expected error 
ranged from 10–70 pixels. Participants were asked to first report on a scale from 
0–100 how confident they felt about their ability to localize the hidden circle, given 
the samples displayed on the screen. After the confidence rating, the number of 
credits available appeared (either 40, 70, 100 or 125). Participants were then asked 
to accept or reject the offer to place the blue circle. Note that participants simply 
expressed preferences in this version of the task, such that there was no correct or 
incorrect response. They received no feedback during their series of choices. To 
incentivize the context, they were instructed that a sub-sample of their accepted 
trials would be selected at the end of the session for them to position the blue 
circles and win credits accordingly.

In total, all participants underwent the same set of 168 trials (42 trials per 
reward level), divided into six experimental blocks (28 trials per block). The order 
of presentation was randomized.

External measures. Interleaved with the tasks, participants completed established 
self-report questionnaire measures of apathy (AMI34), impulsivity (Barratt 
impulsiveness scale-11; ref. 35), depression (Beck Depression Inventory-II62) and 
uncertainty preference (Intolerance of Uncertainty Scale63). They also performed 
a time-limited (10 min) test of non-verbal fluid intelligence (Raven’s progressive 
matrices test33).

Fatigue ratings. In experiment 1b, participants were asked to rate, between 0 and 
100, their level of subjective fatigue at various points throughout the experimental 
session. When doing so, a vertical visual analogue scale appeared in the middle 
of the screen with the words ‘Not at all’ and ‘Extremely’ at its lowest and highest 
extremes, respectively, and the question ‘How tired do you feel?’ was displayed at 
the top.

Individuals were instructed to touch the screen to place a cursor at the level 
that best reflected their current fatigue state. The corresponding rating (a number 
between 0 and 100) was displayed on the side of the cursor to facilitate the 
response. For any given rating, the starting position of the cursor was set to the 
value of the preceding rating. Participants pressed the space bar to validate their 
response and resume the task.

Individuals were asked to rate their fatigue at the beginning, middle and end of 
each experimental block (that is, nine times during the exposure task then 24 times 
during the active sampling task). Both raw and z-scored ratings were analysed.

Experimental design. The average duration of each experiment is provided 
in Extended Data Fig. 1. Experiment 1 included two separate sessions (a 
passive decision task (experiment 1a) and an active information-sampling task 
(experiment 1b)), taking place at the same time on consecutive days. The order 
of the two sessions was fully counterbalanced among gender category. Then, 
participants underwent three blocks of 28 exposure trials (84 trials in total), 
requiring them to place the blue disk for different combinations of reward and 
uncertainty (average duration = 10.0 min; s.d. = 1.7 min; performance reported 
in Supplementary Fig. 1). The aim of this short task was to expose participants 
to the scoring function so that they could perform the passive choice experiment 
even on the first session. After the exposure task, participants underwent either 
eight blocks of 12 active sampling trials (96 total; active information-sampling 
task) or six blocks of 28 choice trials (168 total; passive decision task). Both the 
starting credit (R0 = 100 or 125 credits) and sampling cost (ηs = 1 or 5 credits per 
sample) were experimentally manipulated in a two-by-two design in the active 
information-sampling task in experiment 1b (24 repetitions of each of the four 
combinations; Extended Data Fig. 2). In addition, a visual analogue scale appeared 
on the screen every 14 trials during the exposure task and every six trials during 
the active information-sampling task, for participants to rate how fatigued they felt. 
The average value during the exposure was used as the baseline measure of fatigue.

In experiments 2–5, all four experimental variables (R0, ηs, ηe and tmax) were 
manipulated in separate experimental groups. They each included four blocks 
of 24 trials (96 trials in total). Every block featured six repetitions of each of the 
four levels of the experimental variable manipulated (experiment 2: R0 = (50, 75, 
100, 125) credits; ηs = 3 credits per sample; ηe = 1.2 credits per pixel; tmax = 18 s; 
experiment 3: R0 = 100 credits; ηs = (1, 3, 5, 7) credits per sample; ηe = 1.2 credits per 
pixel; tmax = 18 s; experiment 4: R0 = 100 credits; ηs = 3 credits per sample; ηe = (0.5, 
1.5, 1.9, 2.6) credits per pixel; tmax = 18 s; experiment 5: R0 = 100 credits; ηs = 3 credits 
per sample; ηe = 1.2 credits per pixel; tmax = (6, 10, 14, 18) s; Extended Data Fig. 2). 
The four trial types were inter-mixed and the location of the hidden circle was 
chosen randomly for each trial.

In all of the experiments, task instructions were delivered at the beginning 
of the session using an automated script. This script presented the rules of the 
game and included a practice trial with step-by-step instructions popping up on 
the screen. The experimenter proceeded to the rest of the testing if participants 
demonstrated sufficient understanding of the task (no participant was excluded 
for not understanding the task). All participants also completed a debriefing 
questionnaire at the end of the experimental session to ensure they understood the 
task properly.

Quantifying information-sampling efficiency. As illustrated in Fig. 1c, 
information sampling efficiency was quantified as the rate at which the expected 
error decreased over successive samples. On average, this relationship was 
exponential (Extended Data Fig. 4). The value of α was estimated by fitting the 
following relationship to individual datasets separately:

ÊE(n,1) =

∑96
i=1 EE(i,1)

96

ÊE(n,s) = (ÊE(n,1) − ÊE∞) × (1 − αn)
s−1 + ÊE∞

0 < α < 1 and ÊE∞ > 0

(2)

where n is the trial number and s is the serial position of the sample within the 
trial (the 0th sample was the one displayed on the screen at the beginning of the 
trial, before participants touched the screen; Fig. 1a). This simple model was 
fitted using a least-mean-squared error procedure, implemented in MATLAB 
(MathWorks version 2018a) with the function fmincon. For each participant, 
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parameter estimation yielded one α per trial and one positive asymptote ÊE∞ 
for all trials. The former captured how much individual observations reduced 
uncertainty within a given trial (higher α means more efficient sampling, that is, 
sharper reduction of the expected error). The latter captures the asymptotic limit of 
information gathering for a given participant.

Computational model of sampling speed, efficiency and extent. From a 
neuroeconomic perspective, behaving optimally means adopting the course of 
action—parameterized here as the combination of (ISI, α, s)—that maximizes the 
expected value of the final response (Fig. 4a). This variable provides a predictive 
estimate of the reward expected to arise from placing the blue disk. Numerically, it 
is calculated as:

EV0 = R0 − ηe × EE0

EVs(ISI, α, tmax) = EVs−1 + p(s|ISI, tmax)

×[ηe × (1 − α) × (EEs−1 − ˆEE∞) − ηs]

(3)

(in words, expected value of sample = previous expected value + probability 
of acquiring the sample given the current time × [expected information 
benefit – sampling cost]), where the probability of acquiring a sample is 1 during 
the time allocated to the search and null otherwise:

{

p(s|ISI, tmax) = 1 if s × ISI ≤ tmax

p(s|ISI, tmax) = 0 if s × ISI > tmax
(4)

Note that the interaction between economic variables and time pressure is built 
in the architecture of the model. The time allocated to the search (tmax) influences 
the number of acquirable samples for a given sampling rate, while economic 
variables (R0, ηs and ηe) influence the magnitude of the expected value at each step. 
Thus, the two interact in a multiplicative manner. For example, manipulating the 
time pressure when errors are strongly penalized (that is, every sample induces a 
large change in the expected value) has a greater influence on utility than when 
errors are weakly penalized (that is, every sample induces a small change in the 
expected value). Although this type of interaction was not tested here for practical 
reasons, it could be done in future studies.

The rational expected value model was modified as follows to build the models 
evaluated in this work. Note that the expected value is replaced by an expected 
utility because its specification departs from the rational definition:

EU0 = R0 − ηe × EE0

EUs(ISI, α, tmax) = EUs−1 + p(s|ISI, tmax) × [we × ηe × (1 − α)

×(EEs−1 − ÊE∞) − ws × η1+γ.s
s − ηc(ISI, α)]

(5)

(in words, expected utility of sample = previous expected utility + probability 
of acquiring the sample given the current time × [expected information 
benefit − sampling cost − cognitive effort cost]), where γ is a power term 
introducing a nonlinear transformation of the sampling cost over successive 
samples and ηc(ISI, α) is a cognitive effort cost function. The information-gathering 
asymptotic limit, ˆEE∞, was estimated for each individual by fitting equation (2) 
beforehand. Thus, the modelling of active information sampling behaviour (ISI, α, 
s) took into consideration inter-individual differences in asymptotic information 
gathering performance.

Various cognitive effort cost functions were evaluated in the paper:

ηc(ISI, α) = 0 (no cost)

ηc(ISI, α) = w0 + wspeed ×
1
ISI + wα × α (linear)

ηc(ISI, α) = w0 + wspeed ×
1

ISI2 + wα × α2 (quadratic)

ηc(ISI, α) = A × ew0+wspeed×
1
ISI +wα×α (exponential)

ηc(ISI, α) = A
1+ew0−wspeed×

1
ISI −wα×α

(sigmoid)

(6)

All models reported in the paper also included a free intercept, w0 (versions without 
an intercept are reported in Supplementary Fig. 2). Logistic and exponential cost 
functions required the addition of an extra free scaling parameter, A.

For each of the linear, quadratic, exponential and sigmoid classes, three 
versions of the model were built: (1) only speed penalized (wα = 0); (2) only 
efficiency penalized (wspeed = 0); and (3) both speed and efficiency penalized. The 
sampling cost power term, γ, was only included in the absence of a cognitive effort 
cost (ηc(ISI, α) = 0; model 2) to act as a second reference model and to ask whether 
a nonlinear utility function could account for the data without the cognitive effort 
costs. It was never used in combination with a linear, quadratic, exponential or 
logistic cognitive effort cost function, to prevent over-fitting by overly complex 
models. An exhaustive description of the free parameters included in each model is 
provided in Extended Data Fig. 5.

The likelihood function was obtained by applying a softmax function over the 
three-dimensional space of expected utility (the expected utility is a function of ISI, 
α and s) for a given task environment (a combination of R0, ηs, ηe and tmax),  
as follows:

ps(stop|ISI, α, tmax) =
exp(EUs(ISI, α, tmax))

∑

i
∑

a
∑tmax

t exp(EUs(i, a, t))
(7)

Model fitting involved finding, for each individual separately, the parameters that 
minimized the negative log-likelihood of observing the multivariate distribution 
of the number of samples acquired (s; one value per trial), ISI (averaged across 
samples within a trial to obtain one value per trial) and sampling efficiency (α; 
one value per trial). Note that sampling speed and efficiency were assumed to be 
stationary within a trial (that is, one combination of (s, ISI, α) per trial). Although 
it is an approximation of actual human behaviour, this assumption was necessary 
to simplify the framework. Parameter optimization was carried out in MATLAB 
(MathWorks version 2018a) using Bayesian adaptive direct search31, which was 
chosen for its high performance with non-smooth cost functions. Model fits were 
compared using BIC, which quantifies the goodness of fit while penalizing models 
for the number of free parameters, to avoid over-fitting.

Statistical analysis. Data handling and statistical analysis were performed in 
MATLAB (MathWorks version 2018a). Mixed-effect models with maximal random 
structure were used for statistical analysis of behavioural measures. When relevant, 
the trial index was included as a random effect to control for potential learning 
effects throughout the task (see Supplementary Fig. 4 for a visualization of these 
effects). Extended details (link function, data transformation, model specification, 
parameter estimates and statistics) are provided in Supplementary Tables 1–15. 
Robust multiple linear regression was used to investigate the relationship between 
fatigue development (block 8 minus baseline) and the parameters of the winning 
cognitive effort cost function in experiment 1b (w0, wspeed and wα) while controlling 
for the experiment duration. This method uses an iteratively re-weighted 
least-squares procedure to limit the contribution of potential outliers to the linear 
fit. All statistical tests were two sided. No a priori hypotheses/predictions were 
altered after the data were analysed or during the course of writing/revising  
the paper.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Anonymized participant data have been deposited on the Open Science Framework 
platform and can be found at https://osf.io/25wkh/.

Code availability
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https://osf.io/25wkh/. Additional analysis codes are available on request from  
the corresponding authors.
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Extended Data Fig. 1 | Demographic and questionnaire measures. The table shows group means with standard deviation in parenthesis. F: Female;  
M: Male; YOE: years of education (since kindergarten); BDI: Beck Depression Inventory-II; AMI: Apathy Motivation Index; BIS-11: Barratt Impulsiveness 
Scale-11; IUS: Intolerance of Uncertainty Scale.
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Extended Data Fig. 2 | Experimental design. All experiments included four types of trial (24 repetitions per trial type; 96 trials in total). The cost-benefit 
and temporal structure of these trial types is depicted here. R0: initial credit; ηs: sampling cost; ηe: error cost; tmax: time allocated to the sampling phase.
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Extended Data Fig. 3 | A visual illustration of efficient versus inefficient sampling. A map of the posterior belief (top row) and of the expected change in 
expected error (EE) (bottom row) is plotted for the two example trials plotted in Fig. 1c (panel a: High α trial; panel b: Low α trial). The posterior belief map 
represents (in blue) all pixels that may be the centre of the hidden circle given the information on the screen (grey: search space; purple dots: observations 
inside the hidden circle; white dots: observations outside the hidden circle). The smaller this area, the lower the overall uncertainty (EE). For each sample, 
the associated map represents the change in EE expected to occur for every possible candidate sampling location. An efficient sampler systematically 
samples where the expected ΔEE is the lowest. a. During efficient sampling, the area covered by the posterior belief decays because the participant 
samples where the expected ΔEE is the lowest. b. By contrast, when sampling is inefficient, the area covered by the posterior belief decays less sharply 
because the participant does not sample where the expected ΔEE is the lowest.
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Extended Data Fig. 4 | On average, the expected error decreases exponentially over successive samples. Grey lines represent, for each participant (n = 
127 across all five experiments), the average Expected Error as a function of sample index. The black line shows the average across all participants ( ± s.d.).
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Extended Data Fig. 5 | Free parameters included in our models of speed, efficiency and extent of active information sampling. Models were defined 
using the equation reported in the Methods. Tick: parameter included in the model and estimated through the fitting procedure; Cross: parameter not 
included in the model (effectively set to zero). *: Winning model (Model comparison in Fig. 5, Extended Data Fig. 7& Supplementary Fig. 2).
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Extended Data Fig. 6 | Economic and time constraints influence the extent, speed and efficiency of active information sampling. a. Individuals sampled 
more with large initial reward reserves (Exp. 2, n = 20), when acquiring data was cheap (Exp. 3, n = 20), when final error was strongly penalised  
(Exp. 4, n = 20), and when they had time to search (Exp. 5, n = 19). Hand icon adapted from Freepik: macrovector. b-c. The initial credit and severity 
of error discounting did not influence how quickly or efficiently participants resolved localisation uncertainty (Exps. 2 & 4). Players sampled slower but 
more efficiently when acquiring data was more expensive (Exp. 3). By contrast, they speeded up but maintained a high level of efficiency (indexed by 
information extraction rate) under tighter time pressure (Exp. 5). Points and error bars show group mean ± s.e.m. Lines show condition averages for 
each participant. Positive/negative main effect of the experimental variable manipulated is shown in red/blue. Full statistical details are reported in 
Supplementary Tables 3-5.
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Extended Data Fig. 7 | Model comparison from Experiments 2-5. The same models as in Fig. 5 are compared here. Model 1 and 2 included no cognitive 
effort cost (Model 1: rational specification; Model 2: nonlinear utility function; in grey) and were used as a reference. The other 12 models included a 
cognitive effort cost specified in terms of either speed (Models 3, 6, 9, 12), efficiency (Models 4, 7, 10, 13) or both (Models 5, 8, 11, 14). They differed with 
respect to the shape of the cost function (green: linear; orange: quadratic; blue: exponential; pink: sigmoid). Across all four experiments, participants’ 
choices of sampling speed, efficiency and extent were best explained by a model penalising both speed and efficiency with a quadratic cost function 
(Model 8, lowest Bayesian Information Criterion, BIC).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data analysis Custom code written in MATLAB version 2018a 
For the drift-diffusion model: HDDM 0.6.0 in Python 2.7
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study uses a novel active information sampling task, as well as a passive counterpart. 
Questionnaire data were also collected. 
All data are quantitative.

Research sample Total n = 127 (Exp. 1: n=48,Exps. 2-4: n=20 each, Exp. 5: n=19) 
Mean age: 24.9 years (SD: 3.9) 
Gender: 64 females (Exp. 1: 24F/24M, Exps. 2-4: 10F/10M, Exp 5: 10F/9M) 
 
Participants were undergraduates, postgraduates and young professionals, recruited via online study advertisement (Oxford 
Psychology Research participant recruitment scheme website). Exclusion criteria included personal history of psychiatric or 
neurological condition. 
 
A sample of young healthy adults was used here because the objective of the study was to characterize normal active information 
sampling behaviour in the absence of neurological or psychiatric condition.

Sampling strategy In Exp. 1, prospective volunteers were selected based on their AMI total score (filled online) to ensure a wide range of motivation 
levels. In each gender sub-group, 12 participants had a score above 1.33, and 12 participants had a score bellow 1.33. 
 
No sample-size calculation was performed. Sample size was determined a priori based on previous studies with similar objectives.

Data collection All tasks were presented on a 17-inch touchscreen PC using MATLAB version 2018a and Psychtoolbox version 3. 
Participants sat in a quiet testing room, within reaching distance of the screen (about 50 cm). 
Questionnaire data were collected on an iPad tablet, using QUALTRICS. 
 
Recruitment and data collection were carried out by Pierre Petitet and Bahaaeddin Attaallah. An experimenter (sitting about 2-3 
meters behind the participants) was present in the room at all time during behavioural testing. Their role was to explain the task at 
the beginning of the session (using an automated instruction script), and check that participants were engaged in the task 
throughout the session. They did not provide strategy advices when participants asked. 
 
Researchers were not blind to the experimental condition or study hypothesis, but their influence on performance was abolished by 
the use of automated, computerised testing procedures.

Timing Exp. 1: Oct 2018-Dec 2018 
Exps. 2-4: July 2019 - September 2019 
Exp. 5: Feb 2020

Data exclusions No data were excluded from the analyses.

Non-participation No participant dropped out after inclusion.

Randomization Participants were allocated into experimental groups randomly.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were recruited via online advertisement. There was a large diversity of professions (or university subjects 
studied) and nationalities. Like in most experimental psychology studies, most participants were educated (18 years of 
education on average, s.d.: 3 years). It is therefore possible that the participants we tested performed slightly better than the 
general population. Nevertheless, we show evidence that performance did not reach ceiling (see Exp. 5 vs. other Exps.).

Ethics oversight University of Oxford (IRAS ID: 248379, Ethics Approval Reference: 18/SC/0448)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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