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Ageing is associated with disrupted reinforcement
learning whilst learning to help others is preserved
Jo Cutler 1,2,3✉, Marco K. Wittmann 2,3, Ayat Abdurahman2,3,4, Luca D. Hargitai 3, Daniel Drew2,3,5,

Masud Husain 2,3,5 & Patricia L. Lockwood 1,2,3,6✉

Reinforcement learning is a fundamental mechanism displayed by many species. However,

adaptive behaviour depends not only on learning about actions and outcomes that affect

ourselves, but also those that affect others. Using computational reinforcement learning

models, we tested whether young (age 18–36) and older (age 60–80, total n= 152) adults

learn to gain rewards for themselves, another person (prosocial), or neither individual

(control). Detailed model comparison showed that a model with separate learning rates for

each recipient best explained behaviour. Young adults learned faster when their actions

benefitted themselves, compared to others. Compared to young adults, older adults showed

reduced self-relevant learning rates but preserved prosocial learning. Moreover, levels of

subclinical self-reported psychopathic traits (including lack of concern for others) were lower

in older adults and the core affective-interpersonal component of this measure negatively

correlated with prosocial learning. These findings suggest learning to benefit others is pre-

served across the lifespan with implications for reinforcement learning and theories of

healthy ageing.
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Learning associations between actions and their outcomes is
fundamental for adaptive behaviour. To date, the majority of
studies examining reinforcement learning have tested how

we learn associations between actions and outcomes that affect
ourselves, and largely focused on these processes at a young age,
both in humans and other species1–5. However, such self-relevant
learning may be computationally separable from learning about
actions that help other people. Studies suggest slower learning of
associations between actions and outcomes when they are about6

or affect others7, henceforth referred to as ‘prosocial learning’.
Senescence is associated with a multitude of changes including

declines in cognitive functioning and perception, but perhaps the
preservation of affective processing and social cognitive
abilities8–10. However, less is known about how ageing affects
social behaviour, despite the critical importance of this question.
Social isolation has been found to be as damaging to physical
health as smoking or excessive drinking11. Social behaviours that
benefit others—prosocial behaviours—are vital for maintaining
social bonds and relationships12 across the lifespan. In addition to
the benefits for others, prosociality has been linked to improved
life satisfaction13, mental wellbeing14 and physical health15 for
the person being prosocial, all of which could contribute to
healthy ageing. A key aspect of prosocial behaviour is the ability
to learn associations between our own actions and outcomes for
other people7. Here, we use computational models of reinforce-
ment learning in young and older participants to examine the
mechanisms that underpin self-relevant and prosocial learning
and associations with healthy individual differences in socio-
cognitive ability.

Reinforcement Learning Theory (RLT) provides a powerful
framework for understanding and precisely modelling learning16.
In RLT, prediction errors signal the unexpectedness of outcomes
and affect the choices we make in the future. The influence that
prediction errors have on choices can be modelled individually
through the learning rate, which quantifies the effect of past
outcomes on subsequent behaviour. The plausibility of reinfor-
cement learning as a core biological mechanism for
action–outcome associations is bolstered by our understanding of
neurobiology, with prediction errors encoded by single neurons
in the ventral tegmental area17. Although essential for successful
adaptive behaviour, several studies suggest that our propensity for
reinforcement learning declines in later life10. Compared to
younger adults, older adults show learning impairments parti-
cularly when action–outcome associations are probabilistic18 or
reverse19. Age-related declines in learning ability have been linked
to functional and structural changes in frontostriatal circuits20,21

and dopamine transmission18,22, which shows a significant age-
related decrease23–25 and has a key role in coding prediction
errors2,26,27. Indeed, one study showed that administering L-
DOPA, a dopamine precursor, to older adults increased their
learning rate28. Therefore, if reinforcement learning in general
declines in older age, we would hypothesise lower learning rates
for both self-relevant and prosocial learning in older, compared to
younger, adults.

Alternatively, prosocial learning may depend not only on our
learning ability but also our motivation to help others29. Results
from experiments using economic games to measure prosociality
have found that older adults tend to be more generous30,31. There
is also evidence of an age-related increase in charitable donations
to individuals in need32. At work, older adults engage in more
prosocial behaviours than younger adults, according to both self-
report data and colleagues’ ratings33. Finally, self-reported altru-
ism and decisions to donate to others have been shown to
increase with age34. However, one limitation of these studies is
that the paradigms often place self and other reward preferences
in conflict. Money for the other person depends on less money for

oneself. Moreover, older adults generally have higher accumu-
lated wealth, which would be an important confound in studies of
monetary exchange35. Prosocial learning avoids this confound by
separating outcomes for oneself from outcomes for others. If
older adults do indeed value outcomes for others more than
young adults, we might expect that whilst self-relevant learning
declines with ageing, prosocial learning could be preserved.
Comparing young and older adults on self-relevant and prosocial
learning provides an opportunity to dissociate how possible age-
related changes in cognitive ability and social behaviour impact
on learning.

While studies point to potential group differences between
young and older adults, there is also substantial individual
variability in concern for others, which can be captured by trait
measures. Decreased prosocial behaviour and altered self and
other reward processing are key features of psychopathic
traits36,37. Psychopathic traits are characterised by dysfunctional
affective-interpersonal features38,39 and also include an antisocial
behavioural dimension40. Levels of these traits range from clini-
cally defined psychopathy, a severe personality condition linked
to poor life outcomes, violence and criminality41–43, to lower
subclinical levels of psychopathic traits in the general population.
This conceptualisation of psychopathy as dimensional, rather
than categorical, reflects the Research Domains of Criteria
(RDoC) approach to psychiatry44. Evidence of similar beha-
vioural and neural profiles between community samples with
high levels of psychopathic traits and those with clinical diagnoses
of psychopathy45 is consistent with this RDoC approach. Self-
report measures of psychopathic traits mirror the latent structure
of clinical psychopathy measures as comprising socio-emotional
and behavioural dimensions but are distinct from a clinical
diagnosis of psychopathy. These subclinical self-report measures,
such as the Self-Report Psychopathy Scale (SRP)40 used here, can
be administered in behavioural studies to index the range of
scores found in the general population. The SRP captures psy-
chopathic traits on two dimensions labelled: ‘affective-inter-
personal’ (lack of empathy and guilt) and ‘lifestyle-antisocial’
(impulsive and antisocial behaviours)40.

Intriguingly, preliminary evidence suggests that ageing may also
be associated with changes in self-reported psychopathic traits46,
which could have important implications for our understanding of
an ageing population. In community samples, ageing is associated
with a decrease in the socio-emotional and behavioural dimen-
sions of the SRP47. These studies highlight the importance of
assessing how differences in self-reported psychopathic traits
could map on to differences in prosocial behaviours.

Taken together, previous research supports opposing hypoth-
eses for how ageing is associated with self-relevant and prosocial
reinforcement learning. On the one hand, evidence suggests that
older adults should be impaired at learning, regardless of the
recipient, consistent with ageing-related declines in learning
ability and dopamine transmission. On the other hand, potential
increases in valuing outcomes for others in older, compared to
younger, adults would predict preserved prosocial learning ability
but reduced self-relevant learning ability. Finally, we expected
variation in self-reported psychopathic traits to be associated with
learning for others but not self in both age groups.

To distinguish between these competing hypotheses, we tested
75 young (aged 18–36, mean= 23.07, 44 females) and 77 older
(aged 60–80, mean= 69.84, 40 females) adults carefully matched
on gender, years of education and IQ test performance. Partici-
pants completed a probabilistic reinforcement-learning task
(Fig. 1) designed to separate self-relevant (rewards for self) from
prosocial learning (rewards for another person), as well as con-
trolling for the general valence of receiving positive outcomes
(rewards for neither self nor other).
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The detailed model comparison showed that a computational
model with separate learning rates best explained how people learn
associations for different recipients (Fig. 2). Young adults were faster
to learn when their actions benefitted themselves, compared to when
they helped others. Strikingly, however, this was not the case for older
adults, who showed a relative increase in the rate at which they learnt
about actions that helped others, compared to themselves (Fig. 3a, b).
Older adults had significantly reduced levels of self-reported psy-
chopathic traits (mean= 21.09) compared to younger adults (mean
= 24.36) and in older adults, lower self-reported psychopathic trait
scores correlated with prosocial learning rates (Fig. 4a, b). These
effects were not explained by individual differences in IQ test per-
formance, memory or attention abilities. Overall, we show that
despite age-related disruption to self-relevant learning, prosocial
learning was similar between young and older adults. Ageing was also
associated with a decline in self-reported psychopathic traits. These
findings suggest learning how our actions help others is preserved
across the lifespan.

Results
We analysed the behaviour of 75 younger adults and 77 older
adults who completed the probabilistic reinforcement-learning
task (Fig. 1b), neuropsychological tests, and a self-report measure
of psychopathic traits (see ‘Methods'). To ensure comparability,
older adults with dementia, as diagnosed by Addenbrooke’s
Cognitive Examination (ACE)48, were not included in the study.
The two age groups were matched on gender (χ2(1)= 0.45, P=
0.50) and did not differ in years of education or IQ test perfor-
mance (Supplementary Table 1). IQ test performance was
quantified using age-standardised scores on the Wechsler Test of

Adult Reading (WTAR)49. We conducted additional analyses
controlling for IQ test performance (standardised WTAR score,
measured for young and older adults), and memory and attention
(memory and attention subscales of the ACE, older adults only).
These control analyses showed that our results are not accounted
for by IQ test performance or executive function (see ‘Methods'
and Supplementary Information).

Learning occurs for all recipients for both age groups. We first
examined whether participants were able to learn for all three
recipients to validate their ability to complete the task. We
quantified performance as selecting the option associated with a
high chance of receiving the reward. Participants in both age
groups were able to learn to obtain rewards for themselves,
another person and no one. This was demonstrated through
average performance above chance level (50%; all ts > 15.46, all
Ps < 0.001) and a significant effect of trial number in predicting
trial-by-trial performance (all Zs > 4.48, Ps < 0.001) for each
separate recipient and age-group combination.

Learning rate depends on who receives the reward. Next, to
quantify learning, we used computational models of reinforcement
learning to estimate learning rates (α) and temperature parameters
(β), key indices for the speed by which people update their esti-
mates of reward, and the precision with which they make choices,
respectively. Models were fitted using a hierarchical approach and
compared using Bayesian methods50,51, with model selection
based on the exceedance probability and integrated Bayesian
Information Criterion (BIC; see ‘Methods'). We tested multiple
models that varied with respect to whether learning could be

Fig. 1 Prosocial learning task and social role assignment. a The role-assignment procedure involved the participant (dark blue), confederate (light blue)
and two experimenters (green). Top: from above showing the positioning of the participant and two experimenters inside the testing room, and the
confederate on the other side of the door. Bottom: the participant and confederate wore a glove to disguise their identity and waved to each other from
either side of the door. Participants were instructed that they would be assigned to roles of ‘Player 1’ and ‘Player 2’, but the participant was always assigned
to be Player 1. After this procedure, participants were informed that they would play a game where they could gain rewards for themselves, the other
participant (Player 2) or neither participant. They were told that Player 2 would not play the same game for them, and that Player 2 would not know that
they may receive an additional bonus based on the choices the participant made. This meant that participants’ choices were made anonymously and should
not be affected by reputational concerns. b Participants performed a reinforcement-learning task (‘prosocial learning task’), in which they had to learn the
probability that abstract symbols were rewarded to gain points. At the beginning of each block, participants were told who they were playing for, either
themselves, for the other participant, or in a condition where no one received the outcome. Points from the ‘self’ condition were converted into additional
payment for the participant themselves, points from the ‘other’ condition were converted into money for Player 2, and points from the ‘no one’ condition
were displayed but not converted into any money for anyone.
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explained by shared or separate free parameters across recipients
(self, other no one). Based on our previous results7, we examined
whether shared or separate learning rates, in particular, resulted in
a better model fit. We used four candidate models:

(i) 1α1β: one α for all three recipients and one β for all three
recipients

(ii) 3α1β: αself, αother & αno one, one β
(iii) 2α1β: αself & αnot-self [other + no one], one β
(iv) 3α3β: αself, αother, αno one, βself, βother & βno one

(see Supplementary Table 2)
Initially, we aimed to establish that both our experimental

schedule and our models were constructed in a way that allowed
us to disentangle recipient-specific learning rates. To this end, we
created synthetic choices using simulations based on each of our
four models (see ‘Methods'). We fitted the models to the data and

assured that the best-fitting model was the one that had been used
to create the data. In such a way, we established model
identifiability, both when considering the exceedance probability
(Fig. 2a and see ‘Methods') and the number of times a model was
identified as the best one (Fig. 2b). As a second prerequisite for
testing for agent-specific learning rates, we performed parameter
recovery using our key model of interest, the 3α1β model. Over a
wide parameter space, we were able to recover the parameters
underlying our choice simulation (Fig. 2c).

Having established the models were identifiable and para-
meters recoverable, we performed Bayesian model selection on
the data from our participants. Participant’s choices were best
characterised by the 3α1β model. This indicated that the learning
process underlying the choices is most accurately captured by
assuming separate learning rates for each recipient (αself, αother

Fig. 2 Model identifiability, parameter recovery, model comparison and optimal learning rate. a Model identifiability average exceedance probability
confusion matrix and b model identifiability best model selection confusion matrix. Data were simulated from 150 synthetic participants with each of our
four models then Bayesian model selection was applied, and this procedure was repeated ten times. Identifiability is shown by strong diagonals. c
Parameter recovery was performed on data simulated by the winning 3α1β model from 1296 synthetic participants. The confusion matrix represents
correlations between simulated and fitted parameters. Stronger colours show higher values and high values on the diagonal show parameters can be
recovered. d The 3α1β model (triangle) is the best model on both exceedance probability and integrated Bayesian Information Criterion (BIC) fit measures.
e Average percentages of correct choices (high probability of reward option) associated with 30,000 simulated α values (10,000 synthetic participants,
three recipient conditions; blue dots) show that an optimal learning rate is approximately 0.55 in this task. The range of α values for our participants was
below this peak (grey shading), such that a higher learning rate was associated with better performance. f Correlation between percentage correct and
learning rate across participants. There was a significant Spearman’s Rho correlation between learning rate and accuracy (rs(150)= 0.58 [0.46, 0.68], P <
0.001) (see Supplementary Table 3 for each separate age group and recipient combination; rs in all cases > 0.46, Ps < 0.001), n= 150 (75 young, 75 older).
The shaded area represents 95% confidence interval. Source data are provided as a Source Data file.
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and αno one). This model fit the data best (exceedance probability
= 97%; ΔBICint= 122; Fig. 2d) and predicted choices well (R2=
51%; see ‘Methods' for further details).

Higher learning rates are associated with better performance.
As a final check of the robustness of our model and to enable
clear interpretation of any differences in learning rate between
recipients and age groups (see ref. 52), we conducted an additional
simulation experiment. We simulated data from 10,000 partici-
pants using the 3α1β model. This created 30,000 values of α from
the three recipient conditions, spanning the full range of possible
values from 0 to 1 (see ‘Methods'). For each, we quantified the
associated performance as the percentage of times the synthetic
participant chose the high probability of reward option, averaged
across the blocks for the relevant recipient. Plotting the learning
rates against performance (Fig. 2e) shows that the optimal value
of α is ~0.55. This is higher than all the values of α found on our
task in any recipient condition for either age group. Therefore,
higher learning rates were associated with better performance.
We further established this link by correlating learning rates and

performance in the empirical data from our participants. We
found a strong correlation between learning rates and perfor-
mance overall (rs(150) [95% confidence interval]= 0.58 [0.46,
0.68], P < 0.001; Fig. 2f) and in each recipient and age-group
combination (Supplementary Table 3).

Older adults are slower at learning for themselves, but proso-
cial learning is preserved. Next, we used this validated computa-
tional model to test our hypotheses as to whether there were group
differences in learning rates when learning to reward self, other or no
one. Two participants had learning rates for two of the three reci-
pients more than three standard deviations (SDs) above the mean
(αself 6.68 and αno one 9.64; αself 7.96 and αother 3.78 SDs above the
mean) and were excluded from all analysis of learning rates. We
analysed the condition-specific learning rates from our best-fitting
computational model using a robust linear mixed-effects model
(RLMM; see ‘Methods'). The RLMM fixed effects were age group
(young, older), recipient (self, other and no one), as well as the age
group * recipient interaction. While this RLMM includes all three
recipient conditions, it generates coefficients (main effect and the

Fig. 3 Age-group differences in accuracy and learning rates. a Comparison of learning rates (α) from the computational model shows older adult’s
prosocial learning was preserved. Learning rates were calculated in the self (blue), other (green) and no one (purple) conditions, and are plotted separately
for the young (strong colours) and older (pastel colours) age groups. Older adults’ learning rates in the other condition did not differ from the self condition
(V= 1150, Z=−1.45, r(75)= 0.17 [0.01, 0.38], P= 0.15, BF01= 1.08) or from young adults’ prosocial learning rates (W= 3042, Z=−0.86, r(150)= 0.07
[0.003, 0.24], P= 0.39, BF01= 4.26). In contrast, young participants learned faster for themselves than another person (V= 659, Z=−4.04, r(75)= 0.47
[0.26, 0.63], P < 0.001), n= 150 (75 young, 75 older). Bars show group median, error bars are standard error of the median, asterisks represent significant
two-sided between-group and within-group Wilcoxon t tests (P < 0.05). b Median difference between αother and αself illustrates the significant age group *
recipient [self vs. other] interaction (b= 0.02 [0.002, 0.03], Z= 2.29, P= 0.02), n= 150 (75 young, 75 older). Error bars are standard error of the
median, the asterisk represents the significant interaction from the robust linear mixed-effects model. c Group-level learning curves showing choice
behaviour in the three recipient conditions (self: blue squares, other: green circles, no one: purple triangles) for each age group (young: filled, older: empty
shapes). Trials are averaged over the three blocks (48 trials total per recipient presented in three blocks of 16 trials) for the self, other and no one
recipients, n= 152 (75 young, 77 older). Points show group mean, error bars are standard error of the mean. Source data are provided as a Source Data file.
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interaction with age group) contrasting pairs of recipient conditions
—[self vs. other] and [self vs. no one]. These are more interpretable
than an omnibus test that would not show which recipient conditions
were driving an effect or interaction. We followed up these results
with planned comparisons, between the older and younger group in
each recipient condition, and between pairs of recipient conditions
within each age group.

Across age groups, participants showed a higher learning rate
when rewards were for themselves, compared to for another person
(recipient [self vs. other]: b=−0.02 [−0.03, −0.01], Z=−4.79,
P < 0.001). Importantly, however, this pattern differed between age
groups. The difference between self-relevant and prosocial learning
rates was reduced in older compared to younger adults (recipient [self
vs. other] * age-group interaction: b= 0.02 [0.002, 0.03], Z= 2.29,
P= 0.02). Between-group comparisons showed older adults learnt
more slowly for themselves compared to younger adults (W= 3512,
Z=−2.63, r(150)= 0.22 [0.06, 0.36], P= 0.009). However, prosocial
learning was preserved, with a Bayes factor suggesting strong
evidence of no difference in αother between young and older adults
(W= 3042, Z=−0.86, r(150)= 0.07 [0.003, 0.24], P= 0.39, BF01=
4.26). Within-subject comparisons of αself and αother in each age
group showed that young adults had higher learning rates for
themselves, relative to another person (V= 659, Z=−4.04,
r(75)= 0.47 [0.26, 0.63], P < 0.001). In contrast, older adults showed
no significant difference between learning rates for self and other
(V= 1150, Z=−1.45, r(75)= 0.17 [0.01, 0.38], P= 0.15, BF01=
1.08).

As expected, across age groups learning was slower for no one
than self (recipient [self vs. no one]: b=−0.02 [−0.03, −0.01],
Z=−4.57, P < 0.001). Unlike αself vs. αother, learning for self
compared to no one did not interact with age group (recipient
[self vs. no one] * age-group interaction: b= 0.008 [−0.006, 0.02],
Z= 1.15, P= 0.25). Within-subject comparisons between αself and
αno one in each age group showed that both groups learnt
preferentially for themselves compared to no one (young adults: V
= 928, Z=−2.62, r(75)= 0.30 [0.07, 0.51], P= 0.009; older adults
V= 901, Z=−2.76, r(75)= 0.32 [0.09, 0.53], P= 0.006). There
was no significant difference between the age groups in αno one but
also no evidence in support of the null (W= 3241, Z=−1.61,
r(150)= 0.13 [0.01, 0.29], P= 0.11, BF01= 2.04).

Considering differences in learning between αother and αno one,
young adults did not differentiate between another person and no
one, with strong Bayesian evidence for no difference (V= 1533,
Z=−0.57, r(75)= 0.07 [0.003, 0.31], P= 0.57, BF01= 5.08). In
contrast, older adults had higher learning rates for another
person, compared to no one (V= 976, Z=−2.37, r(75)= 0.27
[0.05, 0.49], P= 0.02). Crucially, this shows that older adults’ lack
of differentiation between self and other was not simply because
they were insensitive to the recipient condition.

Finally, we also observed an effect of age on both learning rates
overall and temperature parameters. Older adults showed slower
learning overall compared to younger adults (b=−0.02 [−0.03,
−0.01], Z=−3.73, P < 0.001) and higher levels of exploration of
choice options (median β young: 0.05, older: 0.19,W= 1511, Z=
−4.89, r(150)= 0.40 [0.26, 0.53], P < 0.001; Supplementary Fig. 1).

In summary, older adults prosocial learning was preserved at
the same rate as young adults, despite age-related declines in self-
relevant learning rates. In other words, young adults learned
faster for themselves than others, but older adults distinguished
between themselves and others significantly less than the young
participants. Only older adults, not young adults, distinguished
between rewards for another person and no one.

Participants perform better for themselves, compared to no
one. For completeness, we also tested the effects of recipient and
age group on trial-by-trial tendency to pick the high-reward sti-
muli (Fig. 3c). In addition to the main effect of trial number (b=
1.70 [1.29, 2.13], Z= 7.97, P < 0.001), showing learning, these
models revealed older adults chose the high-reward option less
frequently (mean for young: 80%, older: 64%, b=−1.20 [−1.65,
−0.70], Z=−4.84, P < 0.001), and improved less during the task
(trial number * age-group interaction b=−0.81 [−1.34, −0.27],
Z=−2.95, P= 0.003) across recipients. When averaging across
age groups, performance was better for the self (75%), compared
to no one (70%; b=−0.36 [−0.68, −0.05], Z=−2.28, P= 0.02).
However, there was not a significant difference between accuracy
for other (72%) and self (b=−0.22 [−0.49, 0.05], Z=−1.63,
P= 0.10), or any significant interactions between the age group
and the recipient (bs < 0.16, Zs < 0.96, Ps > 0.34).

Fig. 4 Correlations between prosocial learning rates (αother) and scores on the affective-interpersonal subscale of the Self-Report Psychopathy Scale.
a For older adults, levels of subclinical self-reported psychopathic traits are negatively correlated with prosocial learning rates (rs(74)=−0.33 [−0.52,
−0.11], P= 0.005, false discovery rate (FDR) corrected P= 0.03). b There is no significant relationship for young adults (rs(74)= 0.21 [−0.02, 0.42], P=
0.07, FDR-corrected P= 0.22) and the correlation is significantly more negative for older than young adults (Z test of the difference between correlations
Z= 3.28, P= 0.001). Relative prosocial learning (αother − αself) is also negatively correlated with self-reported psychopathic traits in older adults (rs(74)=
−0.25 [−0.45, −0.02], P= 0.03) but not younger adults (rs(74)= 0.11 [−0.12, 0.33], P= 0.34; difference Z= 2.18, P= 0.03). Age-group differences in
self-reported psychopathic traits and the correlation between αother and self-reported psychopathic traits, for older adults only, also remained significant
when excluding extreme scores (>3 SDs from the mean) on the psychopathic traits self-report measure (Supplementary Tables 6 and 7). Shaded areas
represent 95% confidence intervals. Source data are provided as a Source Data file.
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Self-reported psychopathic traits are lower and associated with
prosocial learning in older adults. Finally, we examined indi-
vidual variability in self-reported psychopathic traits, considering
age-related differences and influence on prosocial learning. Sev-
eral studies have suggested that individual differences in sub-
clinical self-reported psychopathic traits can be meaningfully and
accurately captured in community samples and often parallel
findings in criminal offenders45. Critically, self-reported psycho-
pathic traits are closely linked to alterations in social behaviour
and willingness to help others. Therefore, we also asked partici-
pants to complete the Self-Report Psychopathy Scale (SRP-IV-
SF)40. The SRP is a self-report measure of psychopathic traits in
community samples that assesses traits with the same factor
structure as in measures used for clinical psychopathies, such as
antisociality and interpersonal effect. The measure robustly cap-
tures the latent structure of clinical psychopathy to ensure parallels
can be drawn between normal individual differences in the com-
munity and clinical samples (see ‘Methods'). One participant in
each age group had missing questionnaire data and are not
included in these analyses. Self-reported psychopathic traits are
consistently divided into two components that this scale measures:
core ‘affective-interpersonal’ traits, which capture lack of empathy
and guilt; and ‘lifestyle-antisocial’ traits, which capture impulsivity
and antisocial tendencies. Comparing the two age groups on these
scales showed that older participants had significantly lower scores
than young participants on both the core affective-interpersonal
(young mean= 24.36, older mean= 21.09, W= 3558, Z=−3.15,
r(148)= 0.26 [0.11, 0.40], P= 0.002) and the lifestyle-antisocial
subscales (young mean= 22.89, older mean= 20.27, W= 3471,
Z=−2.82, r(148)= 0.23 [0.09, 0.38], P= 0.005). These findings
suggest that both components of self-reported psychopathic traits
were reduced in older, compared to younger, adults.

Next, we sought to test our hypothesis that individual differences
in self-reported core psychopathic traits would explain variability in
learning rates, specifically for prosocial learning. We observed a
significant negative relationship between αother and self-reported
core psychopathic traits among older participants
(rs(74)=−0.33 [−0.52, −0.11], P= 0.005; Fig. 4a). Intriguingly,
this relationship was significantly more negative (Z= 3.28,

P= 0.001) than the equivalent correlation in young adults, which
was not significant (rs(74)= 0.21 [−0.02, 0.42], P= 0.07; Fig. 4b).
This pattern of results was the same when correlating relative
prosocial learning rate (αother− αself) with self-reported psycho-
pathic traits. We also conducted control analyses, correlating the
same pairs of variables but using partial correlations controlling for
β. The negative relationship between prosocial learning (when
quantified as αother or αother− αself) and self-reported psychopathic
traits was still present for older adults, showing that the correlations
with learning rates were independent of individual choice
exploration (all Ps < 0.05; see Supplementary Table 4). The negative
relationship between αother and self-reported psychopathic traits for
older adults also remained significant after applying false discovery
rate (FDR) correction for multiple comparisons across this
correlation and the five other age group and recipient combinations
(see Supplementary Table 5). Moreover, the finding that no
significant correlations were apparent between self-reported
psychopathic traits and αself or αno one (Ps > 0.15; Supplementary
Table 5), suggests a specificity in the relevance of psychopathic traits
to prosocial learning in older adults.

Given the age-group differences in levels of self-reported
psychopathic traits and their correlations with prosocial learning,
our final analysis considered possible indirect effects of age group
on relative prosocial learning rate (αother− αself), through scores
on the core affective-interpersonal subscale of the psychopathic
traits measure. A standard mediation model (Fig. 5a) did not
show evidence for a significant indirect effect. However, as would
be predicted if the link between self-reported psychopathic traits
and prosocial learning depends on age, there was a significant
indirect effect in a moderated mediation model. This revealed an
indirect effect of age group on relative prosocial learning rates via
self-reported psychopathic traits for older adults (unstandardised
indirect effect= 0.006 [0.001, 0.01], P= 0.006, proportion
mediated= 0.30) but not for young adults (unstandardised
indirect effect=−0.001 [−0.007, 0.006], P= 0.67; see Fig. 5b
for standardised coefficients). In summary, young and older
adults differed in levels of self-reported psychopathic traits and
whether or not self-reported psychopathic trait scores were
associated with their prosocial learning rates.

Fig. 5 Indirect effect of age group on relative prosocial learning (αother− αself) via self-reported psychopathic traits for older adults only. a A standard
mediation model does not show evidence of an indirect effect of age group on relative prosocial learning via self-reported affective-interpersonal
psychopathic traits. Although accounting for self-reported psychopathic traits means the significant direct effect of age group on relative prosocial learning
(standardised coefficient= 0.30 [0.02, 0.57], t(146)= 2.14, P= 0.03) becomes non-significant (standardised coefficient= 0.24 [−0.04, 0.53], t(145)=
1.72, P= 0.09), self-reported psychopathic traits do not predict relative prosocial learning overall so there is no indirect effect. b Statistical evidence of a
moderated mediation is revealed when accounting for differences between young and older adults in how self-reported psychopathic traits predict relative
prosocial learning. An indirect path via self-reported psychopathic traits exists for older but not younger adults. Older adults have lower levels of self-
reported psychopathic traits (standardised coefficient=−0.41 [−0.66, −0.16], t(146)=−3.23, P= 0.002) and lower self-reported psychopathic traits are
associated with increased relative prosocial learning for older (standardised coefficient=−0.24 [−0.41, −0.08], t(72)=−2.97, P= 0.004) but not
younger (standardised coefficient= 0.04 [−0.19, 0.27], t(72)= 0.34, P= 0.74) adults. Accounting for self-reported psychopathic traits and the interaction
with age group means the significant effect of age group on relative prosocial learning becomes non-significant (standardised coefficient= 0.24 [−0.04,
0.51], t(144)= 1.71, P= 0.09). Self-reported psychopathic traits are scores on the affective-interpersonal subscale of the Self-Report Psychopathy scale, Y:
young, O: older, n= 150 (75 young, 75 older), values are standardised coefficients from robust linear models, asterisks represent significant effects (*P <
0.05, **P < 0.01). Source data are provided as a Source Data file.
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Discussion
Reinforcement learning is a fundamental process for adaptive
behaviour in many species. However, existing studies have largely
focused on young people and self-relevant learning, but the
decisions we make often occur in a social context53 and our
actions affect outcomes for others. Here, we applied computa-
tional models of reinforcement learning to the question of ageing-
related changes in self-relevant and prosocial learning. We found
a clear decrease in learning rates for self-relevant rewards in older,
compared to younger, adults. Intriguingly, despite this reduction
in self-relevant learning, learning rates for outcomes that affected
others did not differ between older and young adults, with
Bayesian analyses supporting no difference. Moreover, not only
did older adults have preserved prosocial learning rates, but age
was also associated with lower self-reported psychopathic traits,
which were specifically linked to prosocial learning in older
adults.

Models of learning are a powerful tool for understanding
prosocial behaviour. By isolating the learning rate, we can pre-
cisely examine the influence of reward history on learning. We
robustly replicated previous findings that self-relevant learning
can be computationally separated from prosocial learning7, with
different learning rates for different recipients providing the best
explanation of behaviour. Including separate learning rates
improved the model fit and, on average across participants,
learning rates were higher for self-relevant rewards, compared to
when someone else received the reward. However, this increase in
learning rates for self, compared to other, was reduced in older
adults who showed higher prosocial learning rates, relative to
their own self-relevant learning rates, than young adults. As
expected, older adults learnt more slowly for themselves than
young adults but in the prosocial condition, the learning rates did
not significantly differ between the age groups. Bayesian analyses
additionally confirmed that prosocial learning was preserved
between young and older adults.

As with much research on age-related changes in cognitive and
social tasks, our key finding that older adults are relatively more
prosocial on a learning task could be interpreted as due to
changes in ability, motivation, or a combination of these factors.
Importantly, learning rates were not associated with executive
function or an age-standardised measure of intelligence. We also
show that our results remain the same after controlling for these
measures. These findings suggest that the observed decline in self-
relevant learning rates, but the preservation of prosocial learning
rates, for older adults are not explained by changes in these broad
abilities. Considering learning more specifically, a recent com-
parison of motivation and ability as explanations for ageing-
related reductions in model-based strategies during self-relevant
learning supported the limited cognitive abilities account54. Our
finding that learning rates for self-relevant outcomes were
reduced in older adults is in line with alterations in the neuro-
cognitive systems required for successful learning. Research
combining models of learning with neuroimaging and pharma-
cological manipulations suggests ageing reduces the ability to
generate reward prediction errors18 (but see refs. 55,56) due to
declines in dopamine functioning28,57 (also see refs. 58,59). Dif-
ferences in motivation could also be applicable for self-relevant
learning as the subjective value of financial outcomes is also likely
to decrease in older age, due to changes in wealth across the
lifespan35.

Our findings suggest that despite declines in learning ability
associated with ageing, prosocial learning—learning to help oth-
ers—is preserved. This finding aligns with emerging literature
showing older adults may be more prosocial than younger
adults30,31,60,61. The possibility that relatively preserved prosocial
learning is related to increased prosocial motivation is in line with

our observed link between learning rates and psychopathic traits.
Self-reported psychopathic traits were significantly reduced in our
older adult sample, dovetailing with similar previous findings on
this trait46,47 and broader trait benevolence34. Importantly, we
found self-reported psychopathic traits in older adults negatively
correlated with prosocial learning rates. The tendency to learn
faster for oneself compared to another person was most reduced,
and even reversed, in the older people lowest on psychopathic
traits. Notably, this negative correlation between self-reported
psychopathic traits and prosocial learning was only found for
older adults. This suggests that age-related differences in prosocial
learning could be linked to basic shifts in individual traits and
motivations over the lifespan, not just to domain-general reduc-
tions in cognitive abilities. The idea that social motivations
become more influential in learning and decision-making with
age has also been suggested based on studies of social rewards
such as smiling faces or hypothetical time spent with social
partners62–64. Taken together, this work suggests that strategies to
support healthy ageing might benefit from leveraging potentially
preserved social motivations, a hypothesis future research could
address.

Importantly, our task included a control condition where no one
benefitted. This was essential to establish that the lack of difference
between self and other learning rates for older adults was not
simply due to an age-related reduction in the absolute dynamic
range as maximum learning rates decrease. Older adults had higher
learning rates for both others and themselves, compared to this
control condition. In contrast, young adults did not differentiate
another person from no one. Older adults, therefore, showed a
relative increase in learning rates that was specific to the prosocial
condition. This is also evidence against the idea that lower learning
rates in older people are reflective of a general reduced sensitivity
to who gets the reward. It is interesting to note that the magnitude
of the decrease in self-relevant learning rates associated with being
older, compared to younger, is similar to the decrease shown by the
young participants when learning for someone else, compared to
themselves. The preservation of prosocial learning rates between
age groups may seem at odds with the decreased self-relevant
learning rates in our sample of older adults and existing evidence
of underlying neurobiological changes. However, learning from
outcomes for self and other have been linked to distinct regions of
the brain, shown through human neuroimaging7,65,66, and causally
in monkeys with focal lesions67.

Taken together, our results add to a growing body of literature
suggesting age-related increases in prosocial motivation30,31,60,61.
If this is the case, the next question is how and why this happens,
as there are many possible reasons to be prosocial. For example,
prosocial behaviours can be motivated by reputational
concerns68, the ‘warm glow’ of helping69–71, or vicarious rein-
forcement from positive outcomes for others72. In our procedure,
we were very careful to prevent reputational concerns influencing
learning to help others. Participants underwent an extensive
procedure to introduce them to another participant but to hide
information about their age and identity. This meant we could
assess the tendency for prosocial learning in a situation where
reputational motivations were excluded, and identity-based
influences were controlled. Using a reinforcement-learning task,
in which performance generates positive outcomes for others, also
focuses on vicarious rewards from the outcome, rather than the
warm glow associated with the action of helping. Thus, the
increase in prosocial learning rates, relative to self-relevant
learning rates, suggests older adults are reinforced by outcomes
for others and themselves more similarly than younger adults.
Many prosocial measures such as the dictator game73 are costly,
requiring direct trade-offs between outcomes for oneself and
others. This also makes it hard to detect whether changes are in
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the value of outcomes for oneself, or outcomes for others, or both.
In contrast, separating self-relevant learning, prosocial learning,
and the control condition allows us to differentiate increases in
the value of prosocial outcomes from decreases in the value of
outcomes for the self. Our results are consistent with older adults
having both decreased self-relevant learning rates (compared to
young adults) and increased prosocial learning rates (compared
to their performance in the control condition).

Our results also support the advantages of a model-based
approach for understanding both prosocial behaviour and ageing.
The model-based parameters were more sensitive to the effects of
interest than general measures of performance on the task. The
model comparison process is able to provide important infor-
mation about how the learning process takes place, which cannot
be revealed from performance measures alone. We showed that
learning was best represented by a separate learning rate for each
recipient. Moreover, this approach can capture additional latent
parameters that drive behaviour, such as the inverse temperature,
which indexes how closely participants follow the stimulus value.
We demonstrate that a single inverse-temperature parameter best
explained behaviour during learning across recipient conditions,
despite learning rates being distinct.

While our procedure and task have many benefits, it is
important to also recognise limitations. To test for age-related
differences in prosocial learning, we recruited a group of older
adults and a group of younger adults. This increases the power to
detect differences, but we are unable to assess at what age or how
quickly changes take place. Also, while our age groups were
matched on years of education and IQ test performance, the
recruitment from university databases or issues around self-
selection may mean that the levels of education and IQ test
performance in our sample are not completely representative of
the general population. Further studies could include samples
recruited entirely from the community and participants across
the whole adult lifespan. Future studies should also assess the
timescale after which older participants reach similar ceiling
levels of performance as younger adults, or whether they are
never able to reach the same level of performance. Of similar
importance is the question of whether older adults may be able to
sustain higher levels of motivation over an extended period of
time compared to younger adults, possibly compensating for
slower learning speeds. In this study, due to time constraints and
the presence of several conditions, we are only able to derive
conclusions from a limited time window. Moreover, previous
research has suggested that individual differences in empathy—
the ability to vicariously experience and understand others’ affect
—might relate to differences in prosocial learning7. Empathy is
positively associated with affective-interpersonal psychopathic
traits and might also relate to motivation to help others74,75.
Further studies could also assess how empathy predicts changes
in prosocial learning across the lifespan. Finally, future studies
could manipulate the identity of the recipient as we show pre-
servation in the tendency to help others when there are no par-
ticular characteristics known about the other person, but these
effects might additionally be modulated by factors such as per-
ceived social distance.

To conclude, we find evidence that despite declines in self-
relevant learning in older adults, the ability to learn which actions
benefit others is preserved. Moreover, the bias with which people
favour self-relevant outcomes is reduced. Not only do older adults
have relatively preserved prosocial learning, they also report lower
levels of core psychopathic traits that index lack of empathy and
guilt, and these traits are linked to variability in prosocial learn-
ing. These findings could have important implications for our
understanding of reinforcement learning and theoretical accounts
of healthy ageing.

Methods
Participants. We recruited 80 young participants and 80 older participants using
the same recruitment methods in order to match the samples as closely as possible.
Participants were recruited from university databases, which included students and
members of the community, social media, and adverts in local newspapers. We
excluded anyone who was currently studying or had previously studied psychology,
and no one took part for course credit. Additional exclusion criteria were previous
or current neurological or psychiatric disorder, non-normal or non-corrected to
normal vision and, for the older sample, scores on the Addenbrooke’s Cognitive
Examination that indicate potential dementia (cut-off score 82)48. This sample size
gave us 88% power to detect a medium-size effect (d= 0.5).

Five young and three older participants were excluded due to: diagnosis of a
psychiatric disorder at the time of testing (one young participant); previous study
of psychology (two young participants); and incomplete or low-quality data (two
young and three older participants). This left a final sample of 152 participants, 75
young adults (44 females aged 18–36, mean= 23.07) and 77 older adults (40
females aged 60–80, mean= 69.84). Two older participants were excluded from all
analyses involving learning rates due to each having two learning rate estimates
more than three standard deviations (SDs) above the mean (for one αself was 6.68
SDs above the mean and αno one 9.64 SDs above the mean; for the second αself was
7.96 and αother 3.78 SDs above the mean). One further participant from each age
group was missing data on the SRP measure so are not included in the relevant
analyses.

Participants were paid at a rate of £10 per hour plus an additional payment of
up to £5 depending on the number of points they earned for themselves during the
task. They were also told the number of points that they earned in the prosocial
condition would translate into an additional payment of up to £5 for the other
participant (see details of the task below). All participants provided written
informed consent and the study was approved by the Oxford University Medical
Sciences Inter Divisional Research Ethics Committee and National Health Service
Ethics.

Prosocial learning task. The prosocial learning task is a probabilistic
reinforcement-learning task, with rewards in one of three recipient conditions: for
the participant themselves (self), for another participant (other; prosocial condi-
tion), and for neither person (no one; control condition)7. Each trial presents two
symbols, one associated with a high (75%) probability of gaining points and the
other with a low (25%) probability of gaining points. The two symbols were ran-
domly assigned to the left or right side of the screen and selected via a corre-
sponding button press. Participants select a symbol then receive feedback on
whether they obtained points or not (see Fig. 1b) so learn over time which symbol
maximises rewards. The experiment was subdivided into blocks, i.e., 16 trials
pairing the same two symbols for the same recipient. Participants completed three
blocks, a total of 48 trials, in each recipient condition, resulting in 144 trials overall
(see Supplementary Information for trial structure). Blocks for different recipients
were pseudo-randomly ordered such that the same recipient block did not occur
twice in a row.

On trials in the self condition, points translated into increased payment for the
participant themselves. These blocks started with ‘play for you' displayed and had
the word ‘you' at the top of each screen. Blocks in the no one condition had ‘no one'
in place of ‘you' and points were not converted into any extra payment for anyone.
In the prosocial other condition, participants earned points that translated into
additional payment for a second participant, actually a confederate. Participants
were told that this payment would be given anonymously, they would never meet
the other person, and that the person was not even aware of them completing this
task (see Supplementary Information). The name of the confederate, gender-
matched to the participant, was displayed on these blocks at the start and on each
screen (Fig. 1b). Thus, participants were explicitly aware of how their decisions
affected on each trial. Stimuli were presented using Presentation v17
(Neurobehavioral Systems— https://www.neurobs.com/).

Questionnaire measures
Dementia screening and executive function. Older adults were screened for
dementia using the Addenbrooke’s Cognitive Examination (ACE-III)48. The ACE
examines five cognitive domains; attention, memory, language, fluency and
visuospatial abilities. The ACE-III is scored out of 100 and as a screening tool, a
cut-off score of 82/100 denotes significant cognitive impairment. We also used
scores on the attention and memory domains in control analyses as proxies for
executive function in older adults.

General intelligence. All participants completed the Wechsler Test of Adult Reading
(WTAR)49 as a measure of IQ test performance. The WTAR requires participants
to pronounce 50 words that have an unusual grapheme-to-phoneme translation.
This means the test measures reading recognition or existing knowledge of the
words, rather than the ability to apply rules for pronunciation. The WTAR was
developed and standardised with the Wechsler Memory and Adult Intelligence
Scales and correlates highly with these measures76. Standardisation involves
adjusting for healthy age-related differences. The test is suitable for participants
aged 16–89, covering our full sample, and scores in older age have been shown to
correlate with cognitive ability earlier in life77.
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Psychopathic traits. Participants completed the short form of the Self-Report
Psychopathy Scale 4th Edition (SRP-IV-SF)40. This scale consists of 29 items, 7
each measuring: interpersonal, affective, lifestyle and antisocial tendencies (plus ‘I
have been convicted of a serious crime’). We used the two-factor grouping, sum-
ming the core, affective-interpersonal items and separately, the lifestyle-antisocial
items for use in the analysis. The robust psychometric properties of this measure
have been established in community78 and offender populations through construct
and convergent validity79, internal consistency and reliability40.

Procedure
Role assignment. To enhance the belief that points earned in the prosocial condi-
tion benefitted another person, we conducted a role-assignment procedure based
on a set-up used in several studies of social decision-making80,81. Participants were
instructed not to speak and wore a glove to hide their identity. A second experi-
menter brought the confederate, also wearing a glove, to the other side of the door.
Participants only ever saw the gloved hand of the confederate, but they waved to
each other to make it clear there was another person there (Fig. 1a). The experi-
menter tossed a coin to determine who picked a ball from the box first and then
told the participants which roles they had been assigned to, based on the ball they
picked. Our procedure ensured that participants always ended up in the role of the
person performing the prosocial learning experiment. Participants were unaware of
the age of the other person, but the experimenter used a name for them, suggesting
their gender was the same as the participant.

Task procedure. Participants received instructions for the learning task and how the
points they earned would be converted into money for themselves and for the other
participant. Instructions included that the two symbols were different in how likely
it was that choosing them lead to points but that which side they appeared on the
screen was irrelevant. Participants then completed one block of practice trials
before the main task and were aware outcomes during the practice did not affect
payment for anyone. After the task, participants completed the self-report measure
of psychopathic traits and the dementia screening.

Computational modelling. We modelled learning during the task with a
reinforcement-learning algorithm16, creating variations of the models through the
number of parameters used to explain the learning rate and temperature para-
meters in the task82. The basis of the reinforcement-learning algorithm is the
expectation that an action (or stimulus) a will provide reward on the following
trial. This expected value, Qt+1(a) is quantified as a function of current expecta-
tions Qt(a) and the prediction error δt, which is scaled by the learning rate α:

Qtþ1ðaÞ ¼ QtðaÞ þ α ´ ½rt � QtðaÞ�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Predictionerror δt

ð1Þ

Where δt, the prediction error, is the difference between the actual reward
experienced on the current trial rt (1 for reward and 0 for no reward) minus the
expected reward on the current trial Qt(a).

The learning rate α therefore determines the influence of the prediction error. A
low learning rate means new information affects expected value to a lesser extent.
The softmax link function quantifies the relationship between the expected value of
the action Qt(a) and the probability of choosing that action on trial t:

pt ½ðajQtðaÞÞ� ¼
eðQt ðaÞ=βÞ

∑a0eðQt ða0Þ=βÞ
ð2Þ

The temperature parameter β represents the noisiness of decisions—whether
the participant explores or always chooses the option with the highest expected
value. A high value for β means choices seems random as they are equally likely
irrespective of the expected value of each option. A low β leads to choosing the
option with the greatest expected value on all trials.

Model fitting. We used MATLAB 2019b (The MathWorks Inc) for all model
fitting and comparison. To fit the variations of the learning model (see below) to
(real and simulated) participant data, we used an iterative maximum a posteriori
(MAP) approach50,51. This approach involves implementing two levels: the lower
level of the individual subjects and the higher level reflecting our full sample. An
MAP approach provides a better estimation than a single-step maximum likelihood
estimation (MLE) alone by being less susceptible to the influence of outliers. For
the real participant data, we fit the model across groups to provide the most
conservative comparison, so this full sample combined young and older
participants.

For the MAP procedure, we initialised group-level Gaussians as uninformative
priors with means of 0.1 (plus some added noise) and variance of 100. During the
expectation, we estimated the model parameters (α and β) for each participant
using an MLE approach, calculating the log-likelihood of the subject’s series of
choices given the model. We then computed the maximum posterior probability
estimate, given the observed choices and given the prior computed from the group-
level Gaussian, and recomputed the Gaussian distribution over parameters during
the maximisation step. We repeated expectation and maximisation steps iteratively
until convergence of the posterior likelihood summed over the group or a
maximum of 800 steps. Convergence was defined as a change in posterior

likelihood <0.001 from one iteration to the next. Note that bounded free
parameters were transformed from the Gaussian space into the native model space
via appropriate link functions (e.g., a sigmoid function in the case of the learning
rates) to ensure accurate parameter estimation near the bounds. The detailed code
for the models and implementation of the fitting algorithm83 can be found at
https://doi.org/10.17605/osf.io/xgw7h/.

Model comparison. Our hypotheses generated four models to compare that dif-
fered in whether the model parameters (α and β) for each participant had one value
across recipient conditions or depended on the recipient (self, other and no one).
For model comparison, we calculated the Laplace approximation of the log model
evidence (more positive values indicating better model fit84) and submitted these to
a random-effects analysis using the spm_BMS routine85 from SPM 8 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm8/). This generates the exceedance probability:
the posterior probability that each model is the most likely of the model set in the
population (higher is better, over 0.95 indicates strong evidence in favour of a
model). For the models of real participant data, we also calculated the integrated
BIC (lower is better50,51) and R2 as additional measures of model fit. To calculate
the model R2, we extracted the choice probabilities generated for each participant
on each trial from the winning model. We then took the squared median choice
probability across participants. The 3α1β model had the best evidence on all
measures (see Supplementary Table 2).

Simulation experiments. We used simulation experiments to assess that our
experiment allowed us to dissociate models of interest, as well as parameters of
interest within the winning model. We simulated data from all four models to
establish that our model comparison procedure (see above) could accurately
identify the best model across a wide range of parameter values. For this model
identifiability analysis, we simulated data from 150 participants, drawing para-
meters from distributions commonly used in the reinforcement-learning
literature86,87. Learning rates (α) were drawn from a beta distribution (betapdf
(parameter,1.1,1.1)) and softmax temperature parameters (β) from a gamma dis-
tribution (gampdf(parameter,1.2,5)). We fitted the models to this simulated data
set using the same MAP process as applied to the experimental participants’ data
and repeated this whole procedure ten times. By plotting the confusion matrices of
average exceedance probability (across the ten runs; Fig. 2a) and how many times
each model won (Fig. 2b), we show the models are identifiable using our model
comparison process.

Our winning model contained four free parameters (αself, αother, αno one, β). To
assess the reliability of this model and the interpretability of the free parameters, we
also performed parameter recovery on simulated data (see Supplementary
Information for procedure) as recommended for modelling analyses that use a
‘data first’ approach82,88. We simulated choices 1296 times using our experimental
schedule and fitted them using MAP. We found strong Pearson’s correlations
between the true simulated and fitted parameter values (all rs > 0.7, see Fig. 2c),
suggesting our experiment was well suited to estimate the model’s parameters.

Finally, we conducted a principled simulation experiment to identify the
optimal learning rate in our task and examine the link between learning rates and
performance. We simulated data from 10,000 participants with learning rates (α)
and softmax temperature parameters (β) drawn from beta and gamma
distributions, respectively, as described above. We bounded the β parameters at 0
and 0.3 to reflect the range shown by our participants. In line with our winning
model, simulated participants had a separate learning rate for each recipient
condition, and these spanned the full range of possible α values from 0 to 1. This
generated 30,000 learning rate values (10,000 participants and three conditions).
For each, we quantified performance as the proportion of times the simulated
participant chose the ‘correct’ high-reward option in the relevant condition. Results
showed that average performance improved as learning rates increased, up to
learning rates of approximately 0.55 (Fig. 2e). Crucially, this optimal alpha was
above the highest learning rate shown by any of our participants in any recipient
condition, meaning a higher learning rate on our task was associated with better
performance.

Statistical analysis. Analysis of group and recipient differences in the fitted model
parameters and behavioural data was run in R89 v3.6.2 with R Studio90. We used a
robust linear mixed-effect model (RLMM; rlmer function; robustlmm package91 to
predict learning rates and generalised linear mixed-effects models (glmer function;
lme4 package92) for the trial-by-trial data (binary outcome of choosing the high vs.
low reward option). We used (robust/generalised) linear mixed-effects models as
these account for the within-subject nature of the recipient manipulation and do
not rely on parametric assumptions. In addition, unlike an ANOVA model or
omnibus test, an RLMM generates coefficients (with confidence intervals and
significance values) for terms that compare pairs of factor levels (e.g., self vs. other).
This approach is more informative than an ANOVA when the factor has more
than two levels, which is our case as the recipient factor has three levels (self, other
and no one). Each linear mixed-effects model had fixed effects of age group,
recipient (self, other, no one) and their interaction, plus a random subject-level
intercept. Analysis of trial-by-trial choices also included the trial number in the
fixed terms, interacting with recipient and group (including the three-way
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interaction), and in the random terms, interacting with the recipient. In the ana-
lysis of learning rates controlling for IQ test performance, standardised scores on
the WTAR were also included as a fixed term (Supplementary Table 8). Correla-
tions of learning rates with self-reported psychopathic traits (Supplementary
Tables 4 and 5) and neuropsychological measures (Supplementary Table 9) were
calculated with Spearman’s Rho nonparametric tests. Comparisons between
independent correlations were calculated with Z tests (paired.r function; psych
package93) To control for IQ test performance and executive function in the
associations between older adults’ prosocial learning rates and self-reported psy-
chopathic traits, we ran partial correlations each controlling for one of WTAR,
ACE memory and ACE attention scores (Supplementary Table 10).

For simple and post hoc comparisons, we used two-sided nonparametric tests as
outcome variables that violated normality assumptions. Effect sizes and confidence
intervals for paired and independent nonparametric comparisons were calculated
using the cohens_d and wilcox_effsize functions, respectively, from the rstatix
package94. Bayes factors (BF01) for non-significant results were calculated using
nonparametric paired and independent t tests in JASP95 v0.14.1 with the default
prior. BF01 corresponds to how many times more likely the data are under the null
hypothesis of no difference than under the alternative hypothesis that there is a
difference. A BF01 >3 (equal to BF10 <1/3) is considered substantial evidence in
favour of the null hypothesis whereas a BF01 between 1/3 and 3 indicates the data
cannot clearly differentiate between hypotheses96. Median learning rates and their
standard errors for plotting were calculated using bootstrapping with 1000 samples.

For the analysis of indirect paths, we used the mediate function (mediation
package97) combined with robust linear models (rlm function, MASS package98).
This method estimates the unstandardised indirect effects, with 95% confidence
intervals and significance, through a bootstrapping procedure with 10,000
bootstrapped samples. The outcome in the models was relative prosocial learning
rate (αother− αself), the predictor was age group, and the indirect path was through
self-reported psychopathic traits on the core affective-interpersonal subscale of the
SRP-IV-SF. We calculated two models. The first, a standard mediation model,
included an indirect path from age group to relative prosocial learning rate via self-
reported psychopathic traits (Fig. 5a). The second included an interaction between
age group and self-reported psychopathic traits in predicting relative prosocial
learning rate to allow the possibility of a statistically moderated mediation99.
Specifically, this type of moderated mediation examines whether the indirect path
(in this case via self-reported psychopathic traits) on the outcome (αother− αself) is
moderated by the predictor (age group)100,101. In other words, self-reported
psychopathic traits could explain some of the variances in relative prosocial
learning for one age group but not the other (Fig. 5b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study are available on the Open Science Framework at https://
doi.org/10.17605/osf.io/xgw7h/. Source data are provided with this paper.

Code availability
Code for modelling and analysis is available at https://doi.org/10.17605/osf.io/xgw7h/.
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