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Abstract

Apathy is a disabling syndrome associated with poor functional outcomes
that is common across a broad range of neurological and psychiatric con-
ditions. Currently, there are no established therapies specifically for the
condition, and safe and effective treatments are urgently needed. Advances
in the understanding of motivation and goal-directed behavior in humans
and animals have shed light on the cognitive and neurobiological mech-
anisms contributing to apathy, providing an important foundation for the
development of new treatments.Here, we review the cognitive components,
neural circuitry, and pharmacology of apathy and motivation, highlight-
ing converging evidence of shared transdiagnostic mechanisms. Though
no pharmacological treatments have yet been licensed, we summarize tri-
als of existing and novel compounds to date, identifying several promising
candidates for clinical use and avenues of future drug development.
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Effort-based decision
making for reward:
a series of cognitive
steps underlying
goal-directed decision
making/motivation
dependent on the
potential rewards and
effort costs associated
with an action

INTRODUCTION

Apathy is a multidimensional syndrome characterized by diminished motivation for engaging in
physical, cognitive, emotional, and social activity, which has been described by several conceptual
and theoretical frameworks (1–3). The division of apathy into cognitive, behavioral, and emo-
tional subtypes has been supported by observations of patients with neurological disorders (3,
4). Factor analysis of symptom scales also identified a social dimension, though this is poorly
captured by most measures (3). Research into apathy has primarily focused on neurological dis-
orders; however, the framework and conceptualization of apathy bear considerable similarity to
those of other motivational syndromes observed in psychiatry. For example, negative symptoms
in schizophrenia, of which apathy is a component, are also often conceptualized as consisting of
cognitive (disorganized or executive symptoms), behavioral, and emotional/affective subdomains
(5). A common feature across phenomenological descriptions of the syndrome is impaired volition
and goal-directed behavior, such as the loss of self-initiated behavior or of the ability to sustain
effort (6). This observation supports a transdiagnostic view that apathy and other motivational
syndromes may share some underlying cognitive components (6).

Apathy is now recognized as a common and highly disabling neuropsychiatric syndrome (1–
3) that occurs across a wide range of neurological and psychiatric disorders (6, 7), including
Alzheimer’s disease (clinically significant apathy reported in 49% of patients) (8), frontotemporal
dementia (FTD) (72%) (9), Parkinson’s disease (40%) (10), stroke (36%) (11), and schizophrenia
(47%) (12). It has a severe negative impact on quality of life (13) and is associated with greater
disability (7), cognitive decline (14), caregiver stress (15), and mortality (16).

Apathy frequently overlaps with anhedonia, a core symptom of depression, defined as a loss
of interest or pleasure in previously rewarding activities (17). Although evidence suggests that
these syndromes ofmotivationmight share some underlyingmechanisms (17), longitudinal studies
of neurodegenerative conditions have demonstrated that apathy is distinct from depression (18).
In dementia, apathy is associated with worse clinical outcomes independent of depression (19),
and symptoms of apathy, but not depression, increase the risk of progression from mild cognitive
impairment to Alzheimer’s disease (20).

Focal lesions to several brain regions have been observed to precipitate pathological apathy.
These regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cor-
tex (dACC), and basal ganglia, as well as connections between these regions (21). It is now also
recognized that neurodegeneration or dysfunction of these frontostriatal circuits may play a key
role in the genesis of the syndrome. An intriguing question is whether, despite different under-
lying pathologies across disorders, the same circuits are affected in apathy across different brain
disorders (21).

COGNITIVE MECHANISMS OF MOTIVATION AND APATHY

Recently, research has attempted to experimentally dissect the cognitive components driving
disorders of motivation to better understand and characterize the phenotype of apathy and amoti-
vation (6, 21). One such framework is effort-based decision making for reward. This framework is
based on the notion that goal-directed decision making/motivation is dependent on the potential
rewards and effort costs associated with an action, which has been conceptualized as a series of
cognitive processes (see Figure 1).

Option Generation

Patients with severe apathy are often able to perform actions when prompted but fail to generate
actions of their own volition. One study, in which patients with schizophrenia were asked to
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Option generation:
the ability to generate
potential options for
behavior, whether
self-generated or
externally cued
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Figure 1

(a) Diagram of the brain regions and anatomical connections implicated in motivation in the human and rodent brain. Dopaminergic
projections are indicated by black arrows, and glutamate/GABA projections are indicated by blue arrows. Dashed lines indicate
projections to more lateral regions. (b) Cognitive mechanisms underlying effort-based decision making to obtain rewards.
Abbreviations: ACC, anterior cingulate cortex; Amg, amygdala; dmPFC, dorsomedial prefrontal cortex; GABA, γ-aminobutyric acid;
NAc, nucleus accumbens; VP, ventral pallidum; vmPFC, ventromedial prefrontal cortex; VTA, ventral tegmental area. Figure adapted
from images created using BioRender.com.

verbally generate options for action in real-world scenarios, reported that apathy correlated
negatively with the number of options generated (22). However, in Parkinson’s disease, when
participants were asked to draw as many different paths as possible between two points within a
fixed time, there was no relationship between the number of options generated and self-reported
apathy, although there was a relationship in the healthy participant group (23).

Such option generation tasks are similar to verbal fluency tests of executive function in which
participants are asked to generate words for different categories. Verbal fluency impairments have
consistently been associated with greater apathy across neurodegenerative diseases (24), in psy-
chosis (25), and in healthy older adults (26), raising the possibility that executive dysfunction may
play an important role in causing apathy. Impairments in fluency (quantity produced), flexibility
(number of categories), and creativity (uniqueness) have also been reported in FTD (27), empha-
sizing the potential mechanistic role of option generation driving apathy in conditions in which a
dysexecutive syndrome is prominent.

Option Selection and Cost-Benefit Decision Making

Patients with apathy also exhibit impairments in selecting a behavioral action. Option selection
depends on the potential costs and benefits of the action and how the decision may affect future
available options.
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Reward sensitivity:
the degree to which an
individual’s behavior is
motivated by
reward-relevant
stimuli

Motivational
arousal/anticipation:
motivational arousal
(evidenced by
physiological measures
such as changes in
heart rate or pupil
dilation) in
anticipation of action
and/or reward

Animal studies of effort-based choice utilize tasks that manipulate the amount of reward on
offer for different levels of effort.These include theT-maze task, in which animals choose between
climbing a barrier to obtain a preferred food in one arm versus consuming a freely available food
in the other (28).

Human studies have utilized similar paradigms, asking participants to exert varying levels of
effort (for example, grip force) for different magnitudes of reward. Individuals with Parkinson’s
disease and apathy are less willing to exert effort for low rewards than are motivated patients (29,
30). Another study in Parkinson’s disease patients using a cognitive, instead of physical, effort
exertion task reported a negative association between apathy and reward sensitivity (31). This
suggests that changes in how reward is evaluated in both cognitive and physical effort processing
can contribute to apathy (32).

Changes in cost-benefit decision making have also been associated with apathy in other neu-
rological conditions. Patients with cerebral small vessel disease and apathy are also less responsive
to low levels of reward (33) and can also be less willing to exert high levels of effort (34). In FTD,
apathy may be associated with increased effort aversion, but not reward sensitivity (29). Several
studies of patients with schizophrenia have found that apathy, but not other negative symptoms,
is associated with decreased willingness to exert effort for reward (35–37). These findings suggest
that changes in sensitivity to reward or effort costs could be a transdiagnostic mechanism driving
apathy across psychiatric and neurological conditions.

Anticipation

Motivational arousal occurs in anticipation of action and its potential outcome, leading to physio-
logical changes in heart rate or pupillary dilatation. Studies of patients with Parkinson’s disease and
genetic cerebrovascular disease have demonstrated that apathy is associated with blunted pupil-
lary responses to anticipation of reward (33, 38). Patients with schizophrenia with higher apathy
have reduced electrodermal activity, irrespective of reward (39). Accurate anticipatory physio-
logical arousal enables the progression to action initiation and preparation for exertion (40). It
is also thought to inform decision making by means of interoception (i.e., the representation of
the internal physiological state of the body) (41). Blunted anticipatory physiological reactivity
may lead to bidirectional impairment in brain-body signaling and representation of motivational
states, thereby contributing to apathy. However, no relationship between interoceptive accu-
racy and apathy has been identified in either Parkinson’s disease or amyotrophic lateral sclerosis
(42–44).

Initiating Action and Sustaining Effort

Apathymay also be a consequence of impaired action initiation and sustaining effort,which consti-
tute appetitive behavior and are often interpreted to reflect “wanting.” In animals, this is measured
by quantifying how much effort an animal is willing to exert to obtain a reward (28), for example,
progressively increasing the number of lever presses a rodent has to make for a reward until a
breaking point where it gives up (28).

Assessment of appetitive behavior in humans involves measuring the speed of response or
amount of effort exerted (45). To date, most studies of apathy and motivational syndromes have
focused on the choice to exert effort rather than differences in sustaining effort. Studies of speed
of response for reward in Parkinson’s disease patients have not shown an association with apathy
(38, 46). Likewise, patients with schizophrenia with higher apathy and depressed patients exhibit
no reduction in reward-related speeding (47, 48). Though further investigations are needed, these
findings do not support the notion that impairments in appetitive behavior contribute to apathy.
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Hedonic response:
response to the
achievement of a goal;
some refer to this as
the liking phase of
motivated behavior

Reinforcement
learning: how rewards
or losses associated
with a stimulus or
action alter subsequent
behaviors through
updates to stimulus
value

Hedonic Response

A theoretical mechanism underlying apathy is reduced hedonic capacity, or the ability to ex-
perience pleasure, which would in turn disincentivize future action. In animal models, hedonic
capacity is measured by indexing consummatory response (49), for example, interpretation of facial
expressions during sugar consumption in primates or rodents (50).

In humans, where hedonic capacity is measured through self-report, evidence to date does not
support hedonic impairment as a key mechanism driving disorders of motivation. For example,
hedonic responses are intact in patients with a high burden of negative symptoms in schizophre-
nia (51), and apathy in Parkinson’s disease is not associated with consummatory impairment
(52).

Learning

Finally, how individuals learn from the outcomes of actions is crucial for guiding future selec-
tion of behavioral options and motivation (53). In the reinforcement learning framework, reward
prediction errors (RPEs) are thought to drive learning by updating models of association be-
tween prospective predictions and outcomes every time an observed outcome deviates from the
prediction (54).

In probabilistic reinforcement learning tasks (used in both animals and humans), a series of
choices between options associated with high and low probabilities of reward is presented (53).
Trials or time taken to establish the initial association with the higher-probability option, and
when reward contingencies change, enables the measurement of learning (53). Performance on
probabilistic learning tasks in two small studies of apathy in patients with Parkinson’s disease
did not show a specific impairment in learning, though reinforcement learning is impaired in
Parkinson’s more broadly (55–57). Similarly, in patients with schizophrenia, no consistent
impairments in learning have been found (58), nor an association with motivational deficits
(59, 60).

However, further understanding of how learning is integrated with other mechanisms underly-
ing motivation is needed. For example, a recent study revealed that exerting effort facilitates more
efficient learning from positive outcomes, a potential mechanism that might contribute to apathy
and that warrants further investigation (61).

NEURAL CIRCUITRY OF MOTIVATION AND APATHY

Early studies of the neural circuitry of motivation were largely informed by the association of
apathy with specific patterns of neurodegeneration, or the development of profound amotivation
following focal lesions (62). For example, akinetic mutism, in which patients are alert but in a state
of profound apathy and indifference, can result from lesions to the ACC and subcortical structures,
including the ventral striatum (VS) (62–65). In stroke, lesions to the basal ganglia have been most
consistently associated with apathy (66).

Although studies examining the association between apathy and lesion location have not al-
ways produced reliable findings (66), the association with basal ganglia lesions is consistent with
the high prevalence of apathy in disorders with prominent neurodegeneration in this region such
as Parkinson’s and Huntington’s disease (10). In Alzheimer’s dementia, greater atrophy of the
ACC, basal ganglia (particularly striatum), orbitofrontal cortex (OFC), and anterior insula has
been associated with increased apathy, independent of cognitive impairment (63, 67–70). Apa-
thy in FTD also correlates with atrophy of the OFC, again independent of executive dysfunction
(71).
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In schizophrenia, analysis of the association between brain anatomy and negative symptoms
has yielded inconsistent results. More severe negative symptoms were correlated with lower gray
matter in the vmPFC and striatum (72, 73), but other studies found discrepant results (74, 75).

Deep brain stimulation (DBS) studies have also shed light on the role of brain regions involved
in motivation. Stimulation of the ACC in two individuals with epilepsy induced the expectation of
a challenge that they were determined to overcome. One of the patients reported during stimula-
tion, “‘It was more of a positive thing like. . .push harder to try and get through this” (76, p. 1360).
Conversely, apathy can be increased in some Parkinson’s disease patients following subthalamic
nucleus DBS therapy compared to the preoperative state (77).

Human and animal studies converge on a network of brain regions that plays a crucial role in
motivation (see Figure 2). These regions include the VS [nucleus accumbens (NAc) in rodents],
ventral pallidum (VP), the ACC and its connections with the basolateral amygdala, vmPFC/OFC,
and ventral tegmental area (VTA). The VTA is the source of dopamine projections to the NAc,
whereas the substantia nigra supplies dopamine projections to the dorsal striatum. Lesions of the
NAc or ACC and optogenetic silencing of neuronal activity in these areas can lead to profound
demotivation in animals (78–80).

VMAT-2
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COMT
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Figure 2

Mechanisms of action of drug candidates tested in randomized controlled trials to treat disorders of motivation. Abbreviations:
5-HT, serotonin (5-HT) receptor; A2A, adenosine 2A; AChE, acetylcholinesterase; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid ionotropic glutamate receptor; COMT, catechol-O-methyltransferase; D, dopamine receptor; DAT, dopamine
transporter; (m)ACh, (metabotropic) acetylcholine receptor; MAO-B: monoamine oxidase type B; NET, noradrenaline transporter;
mGluR, metabotropic glutamate receptor; SERT, serotonin transporter; SNRI, serotonin and noradrenaline reuptake inhibitor; SSRI,
selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; VMAT, vesicular monoamine transporter. Figure adapted from
images created using BioRender.com.
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Option selection and
cost-benefit decision
making: process of
selecting a behavioral
option depending on
the potential costs and
benefits of the action
and how the decision
may affect future
available options

NEURAL CIRCUITRY OF EFFORT-BASED DECISION MAKING

Greater understanding of the brain regions implicated in clinical apathy has informed recent ad-
vances into the neural circuitry underlying effort-based decision making and led to improved
understanding of the neural mechanisms and neuromodulatory systems underlying motivation
(21) (Figure 1).

Option Generation

Studies using verbal fluency or creative thinking paradigms in healthy participants undergoing
functional magnetic resonance imaging (fMRI) have shown that option generation is a function
of executive processing and have identified a key role for the PFC (81, 82). Intriguingly, preserved
creative thinking in patients with FTDhas also been strongly associated with PFC integrity.How-
ever, no investigation to date has examined the neural correlates of option generation and their
relationship with apathy in clinical populations (27). Unfortunately, no comparable test of option
generation in animals exists.

Option Selection and Cost-Benefit Decision Making

Animal studies using intracranial self-stimulation have enabled direct recording of neural activity
during cost-benefit decision making and revealed that rodents will choose to exert effort via lever
presses to receive stimulation of the VTA. The development of optogenetic methods has revo-
lutionized our understanding of the neural processes and systems involved in reward and effort
valuation. An investigation combining optogenetic stimulation of the VTA with fMRI in rodents
revealed that stimulation led to increased activity in the striatum and increased reward seeking,
whereas VTA inhibition reduced striatal activity and reward seeking (79).The same study reported
that stimulation of medial PFC led to reduced striatal response and reward seeking, and it con-
cluded that disrupted frontostriatal circuit synchrony could be a mechanism underlying disorders
of motivation (79).

In humans, a meta-analysis of fMRI studies in healthy participants concluded that vmPFC,VS,
and VTA are primarily involved in representing and signaling reward valuation, whereas the ACC
and anterior insula signal effort costs (83). VS activity increases with the magnitude of prospective
reward and is negatively modulated by prospective effort (84). In contrast, ACC activity positively
correlates with effort costs and is negatively related to prospective reward value, suggesting that
the ACC may play a key role in integrating the costs and benefits of performing an action (85).

In drug-naïve Parkinson’s patients with clinically significant apathy, apathy severity correlated
negatively with dACC and caudate activity (86). Further, a meta-analysis of fMRI studies investi-
gating the neural correlates of apathy in schizophrenia during reward-processing tasks identified
a convergent network of brain regions, including the striatum, ACC, and OFC (87).

Reward Anticipation and Hedonic Responses

Distinct brain regions have been associated with reward anticipation and reward delivery, sug-
gesting that the circuitry underlying motivation may differ from that of hedonic processing (88).
A meta-analysis of healthy participants found that VS and insula activity were consistently asso-
ciated with the anticipation of reward. In contrast, reward delivery was most strongly associated
with the activation of ACC/vmPFC bilaterally, extending to the OFC (88). However, other in-
vestigations have found overlapping roles of the VS, insula, and OFC in reward anticipation and
hedonic response (89).
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Few studies have investigated how these neural processes correlate with apathy. In one
study of patients with schizophrenia, apathy correlated negatively with VS activation during the
anticipation, but not receipt, of reward (90).

Reward Learning

RPE signals are known to be encoded in dopaminergic neurons in the substantia nigra and VTA
and are broadcast to the VS to mediate reward-related learning (91). Regions involved in reward
valuation and effort costs such as the VS and ACC encode information about the outcomes of
actions that drive learning (85). However, recent work has suggested that effort and RPEs are en-
coded in parallel but interconnected brain regions (92). That study reported that effort prediction
error signals were expressed in the dorsomedial PFC, and this was associated with apathy rating
scores (92). In contrast, RPEs were primarily encoded in the VS and were unrelated to apathy
(92).

In summary, the frontostriatal circuits implicated in apathy and motivation (Figure 1) center
on dopaminergic projections from the VTA to VS with onward projections via the thalamus to
PFC regions, specifically the ACC and vmPFC/OFC. Activity in and connectivity between these
regions mediate the decision to exert effort, the value of an action, and the willingness to sustain
exertion and learn from behaviors, and disruption within these circuits plays a key role in the
etiology of apathy (85).

NEUROTRANSMITTERS

Dopamine

The mesolimbic dopamine system has been consistently implicated in the neurochemistry
underlying motivation and its disruption in the development of apathy (62).

Dopamine levels, reward processing, and apathy.Tetrabenazine, a vesicular monoamine
transport-2 (VMAT-2) inhibitor, depletes striatal dopamine by 75% in the NAc (93). In rodents,
depletion of dopamine in the NAc reduces willingness to work, reward response vigor, and ef-
fort exertion (62, 94). In effort-related choice tasks such as the T-maze, NAc dopamine depletion
consistently shifts choice behavior to selection of the low-effort option (28, 95).

In humans, the study of patients with Parkinson’s disease, a model of dopamine deficit, has
revealed a robust association between apathy and dopamine depletion (85). Apathy in Parkinson’s
can often emerge following reduction in medication and is successfully treated with dopamine ag-
onists (10, 96, 97). A robust negative relationship between reduced striatal dopamine transporter
(DAT) levels, a measure of presynaptic dopaminergic projection integrity, and motivational symp-
toms emerges as the disease progresses, independent of depression or motor symptoms (98). In
schizophrenia, antipsychotic dopamine antagonists exacerbate motivational deficits and reduce
dopaminergic transmission in the PFC, which has been associated with more severe apathy (99).
Similarly, in Alzheimer’s disease, though not typically considered a disorder of dopamine, lower
DAT levels correlate with increased apathy (100). Trials of tetrabenazine treatment for tardive
dyskinesia have shown an increased risk of apathy (101). However, further longer-term studies
are needed to address important questions about the motivational effects of recently approved
tetrabenazine derivative treatments (valbenazine and deutetrabenazine) (101).

Parkinson’s disease patients exhibit greater impairments in reward processing when off
dopaminergic medication compared to when on it (57). However, further dissection of the
relative contribution of dopamine transmission in signaling prospective reward and effort costs of
an action has revealed distinct effects of apathy and dopamine (30). Apathy in Parkinson’s patients
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blunts reward sensitivity, whereas dopamine has a general effect in motivating behavior for high-
effort, high-reward options (30). The finding that dopamine enhances willingness to exert effort
has been replicated using both physical and cognitive effort–based decision-making tasks (31,
102).

A more complex picture has been reported in individuals at risk for psychosis, with dopamine
synthesis being negatively associated with VS responses to reward cues, while the same relation-
ship was positive in healthy participants (103). Dopamine state has also been shown to play an
important role in option generation in Parkinson’s disease. Patients on dopamine medication
were able to draw a greater number of different paths between two points than when off of it,
independent of motor symptoms (23).

Though manipulation of dopamine transmission appears to be crucial for motivation, it does
not regulate hedonic capacity. Rodent reactivity to a pleasurable stimulus after NAc dopamine
depletion remains the same as that of controls (62). This finding is consistent with human stud-
ies where dopamine blockade using the antagonist amisulpride was associated with impairment
in reward anticipation but did not affect hedonic response (104). In contrast, participants re-
ceiving naltrexone, an opioid antagonist, did report reduced hedonic capacity during reward
delivery (104). This supports the theory that mesolimbic dopamine primarily modulates moti-
vation, whereas the experience of pleasure relies on parallel endogenous opioid systems in partly
overlapping brain regions (104, 105).

Clarifying dopamine’s role in apathy will also hinge on improved understanding of the dy-
namics of dopamine neurotransmission underlying motivation. Phasic midbrain dopamine firing
encodes RPEs, a finding since confirmed by optogenetic studies (91, 106). Subsequent studies have
proposed a distinction between tonic dopamine signals encoding reward valuation and effort and
phasic dopamine signals encoding learning.More recent research has suggested a more integrated
account of dopamine dynamics. As rodents approach rewards,NAc dopamine signals ramp up and
scale with the magnitude of reward (107). This finding suggests that ramping signals may encode
estimated expected reward value and influence cost-benefit decision making (107). Spatially and
temporally tailored wave-like dopamine patterns of signaling have also been observed and shown
to encode learning and prospective demands of a task (108).

Dopamine receptors, reward processing, and apathy.The above findings confirm that dis-
rupted mesolimbic dopaminergic transmission is a key mechanism underlying apathy (85, 109).
However, the distribution and function of dopamine receptors differ considerably. A more refined
approach has been to clarify the differential role of specific receptors in motivation and apathy
(109).

There are five known dopamine receptors (D1–D5), all of which are G protein–coupled recep-
tors that can be grouped into D1-like (D1, D5) or D2-like (D2, D3, D4) classifications based on
their transduction properties. Activation of D1-like receptors increases intracellular cyclic adeno-
sine monophosphate (cAMP), which tends to promote synaptic plasticity and increase neuronal
excitability, while activation of the D2 family of receptors has the opposite effects (106). This has
led to D1-like receptors being conceptualized as excitatory and D2-like receptors as inhibitory
(106). However, more recent investigations have revealed that dopamine receptors can exert some
of their effects through an array of alternative signaling pathways that may or may not involve
cAMP (110). For example, D2/3 receptor activation of the Gβγ protein subunit of G protein
can modulate ion channels such as G protein inwardly rectifying potassium channels and cal-
cium channels (L and N types) (110). Brain-derived neurotrophic factor (BDNF) receptors can
also be transactivated by D1 and D2 receptors (111), and dopamine binds directly to trace amine–
associated receptors, a family of intracellular receptors that can dimerize with dopamine receptors
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and modulate dopaminergic activity (112). Therefore, the neuronal effects of dopamine depend
on target cell receptors, secondary messenger responses, postsynaptic ion channel activation, and
protein expression profiles (110).

D1 andD2 have a dense distribution within the frontotemporal cortices, limbic system, and the
striatum (113). In contrast, D3 receptors are expressed more narrowly and distributed primarily
within the mesolimbic system, particularly the VS (114). Owing to their expression profile and
the effects of their pharmacological modulation, the D1–D3 receptors are believed to play an
important role in reward processing and motivation (113). Less is known about the role of D4 and
D5, which are distributed more diffusely (114).

A study in rodents using an effort-based decision-making task compared the behavioral effects
of D1 agonists and the selective D1/D5 receptor antagonist ecopipam (115). Ecopipam treatment
induced effort aversion, shifting choices toward low-effort, low-reward options (115). However,
D1 agonist treatment reversed ecopipam’s demotivating effects and shifted preference back to the
high-effort, high-reward option (115). In humans, the D1 receptor has been proposed to play a
central role in motivation and reinforcement learning (113). A recent report concluded that D1
stimulationmodulates bothmotivation and flexible learning of cue-reward associations, improving
reward learning (116). A positron emission tomography study using two different radioligands
found that striatal D1 and D2 binding were differentially associated with learning from positive
and negative outcomes, respectively (16).

Dopamine’s role in motivation appears to depend on both receptor and location. Increasing D2
receptor expression in the VS in rats selectively increased motivation for reward (117). However,
D2 receptor overexpression in the dorsal striatum was not associated with any behavioral change
on motivational tasks (117). In patients with schizophrenia, lower striatal D2 receptor binding was
also specifically associated with decreased motivation (118).

The adenosine system is now understood to closely interact with dopamine function, par-
ticularly D2 receptors. Adenosine A2A receptors are located in striatal regions, have a similar
distribution to D2 receptors, and reverse the effects of D2 agonism (119). Adenosine A2A recep-
tor antagonists are used to treat motor symptoms in Parkinson’s disease (120) but have also been
associated with increased motivation. For example, asthma patients treated with theophylline (a
potent adenosine antagonist) can experience hyperactivity and restlessness, and caffeine’s motiva-
tional properties are attributed to adenosine antagonism (121). Recent studies have revealed that
the motivational effects of the adenosine system are specific to A2A receptor antagonism, act via
the D2 receptor, and induce a preference to engage in effort (122, 123).

The strategic distribution of D3 receptors in the VS has concentrated attention on its role in
reward processing and motivation. Decreased expression of the D3 receptor and its selective in-
hibition in the dorsal striatum of rats produced marked motivational deficits, which were reversed
by a D3 agonist (124). Another study comparing D1-, D2-, and D3-specific agonists in rescuing
motivational deficits induced by lesions to the substantia nigra found that only D3 agonists were
effective (125). In postmortem studies of patients with schizophrenia, lower expression of substan-
tia nigra D3 receptors has been associated with greater negative symptom burden (126). Agonism
of D3 receptors has already been identified as a potential treatment for apathy in Parkinson’s
disease and proposed as a therapeutic target for apathy in other disorders (97, 113).

Synaptic clearance mechanisms also mediate dopamine’s function and vary across corti-
costriatal regions (127). For example, in the VS, rapid recycling via DAT predominates (127).
In contrast, in the PFC, DAT recycling is minimal and enzymatic degradation by catechol-
O-methyltransferase (COMT) is the primary mechanism for clearance, modulating evoked
dopamine release measured over minutes (128–130). Reinforcement learning and apathy have
both been associated with functional polymorphisms in COMT (131, 132).
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In summary, dopamine is a key modulator of motivation and a promising target for the treat-
ment of apathy. However, understanding the complex dynamics of dopamine in modulating
motivational states is crucial for the development of effective treatments. Due to the variation
in metabolism, signaling, and receptor distribution, manipulating dopamine can have paradoxi-
cal consequences for distinct cognitive processes, often depending on basal levels of dopamine in
different brain regions (133).

Serotonin

There are 15 known serotonin (5-hydroxytryptamine, 5-HT) receptors, and the role of this com-
plex system in motivation remains poorly understood (134). Serotonin modulates the release of
other neurotransmitters and is coreleased with dopamine in the VS (135). A consistent find-
ing from early neurophysiological studies of serotonin function is its opponent interaction with
dopamine. For example, drugs acting at the 5-HT2c receptor can reduce mesolimbic dopamine
release, and 5-HT2c antagonists can mimic dopaminergic function and increase willingness and
duration of effort exertion for reward in rats (136, 137). Following these observations, it was hy-
pothesized that 5-HT inhibits action in an aversive context, encoding a punishment prediction
error in contrast to dopamine-signaled RPEs (138). However, subsequent recordings from the
dorsal raphe nucleus (DRN, one of the main sources of 5-HT neurons) found that firing scaled
with the size of prospective reward, while optogenetic stimulation of the DRN increased patience
for reward delivery (139, 140). Additionally 5-HT1A agonism increases dopamine release in the
PFC (141). This suggests that the interaction between 5-HT and dopamine may be crucial in
mediating the temporal dynamics of RPEs that drive reinforcement learning.

In humans, there have been conflicting accounts of 5-HT’s role in motivation. Dietary deple-
tion of the 5-HT precursor tryptophan results in reduced response vigor to reward and reduced
valuation of expected reward during a learning task (134, 142, 143). Studies administering selective
serotonin reuptake inhibitors (SSRIs) have reported reduced effort costs but unchanged reward
value (144).This finding would suggest that SSRIs should treat apathy; however, paradoxically, the
use of SSRIs has been associated with greater apathy compared to other classes of antidepressants
(145).

In summary, it is evident that the complex dynamics and interaction between dopamine and
5-HT play a key role in motivation. However, further empirical work in clinical populations is
needed to clarify 5-HT’s role in apathy (138).

Noradrenaline

The locus coeruleus (LC) is a small, pigmented nucleus located in the pons and is the primary
site of noradrenaline synthesis in the brain (146). Noradrenaline’s role in motivation is only just
beginning to be understood (146). However, recent positive trials of noradrenergic drugs suggest
that this relatively small neuromodulatory system plays a central role in motivation and apathy
(147, 148).

Primate studies indicate that LC neurons are activated immediately before initiating an ef-
fortful action and correlate with effort production (149). Manipulation of LC activity in monkeys
with clonidine, a selective α2-agonist known to decrease LC activity, led to a reduced willing-
ness to exert effort (150). LC activity also signals anticipation of action and is closely associated
with autonomic arousal and pupil dilation, which are themselves correlated with both physical and
mental effort (149, 150).

Neurodegeneration of the LC occurs early in the disease course of Alzheimer’s and Parkinson’s
(151), and greater degeneration of the LC has been associated with increased apathy in patients
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with Parkinson’s (152). Although, to our knowledge, no studies have examined the effects of
adrenoreceptor antagonists on apathy, β-blocker therapy in cardiac patients has long been associ-
ated with an increased risk of lethargy and fatigue (153). Few studies have investigated the role of
noradrenaline in mediating the cognitive components of motivation. However, noradrenaline has
been repeatedly associated with exploratory behavior, in other words, deciding to forego a known
option in favor of a potentially more rewarding but unknown alternative. Two investigations in
healthy participants have shown that the β-adrenergic receptor antagonist propranolol attenuates
value-free random exploration (154, 155). This finding suggests that noradrenaline’s role in
motivation may drive goal-directed behavior for actions with unknown potential rewards.

In summary, while dopamine encodes the cost-benefit trade-off of an action, noradrenaline
may signal the anticipatory arousal and allocation of effort needed to overcome action costs and
affect exploration (156, 157). Disruption of the noradrenergic system may lead to apathy through
imprecise anticipation or effort allocation and supports preliminary evidence that noradrenergic
therapies could be promising treatments for apathy (157, 158).

Acetylcholine

Cholinergic interneurons are critical regulators of striatal network activity, and the role of cholin-
ergic dysfunction in Alzheimer’s disease, in which apathy is prevalent, has renewed interest in
acetylcholine’s role in motivation.

Recent evidence suggests that the cholinergic system, which consists of ionotropic nicotinic
acetylcholine receptors and G protein–coupled muscarinic acetylcholine receptors (mAChRs),
is a powerful modulator of dopamine signaling and, consequently, motivation (159). There are
two nicotinic receptor subtypes, N1 and N2, which are primarily subdivided based on their dis-
tinct locations; N1 receptors are present at the neuromuscular junction, whereas N2 receptors are
located within the peripheral and central nervous system. There are five main subtypes of mus-
carinic receptors (M1–M5), which are found throughout the nervous system but have distinct,
though overlapping, distributions (160). For example, M1, M2, and M4 receptors are abundant
in the cortex and striatum, whereas M5 receptors are numerous on dopaminergic neurons (160).
Similar to dopamine receptors, each has a diverse array of second messenger responses and ef-
fects on ion channels (160). Several studies have shown that mAChRs can bidirectionally modulate
dopamine-dependent action (159). PresynapticM2 andM4 act as autoreceptors on striatal cholin-
ergic interneurons, inhibiting acetylcholine release and modulating local dopamine release (159).
Behavioral effects of dopaminergic drugs are enhanced by mAChR antagonists and attenuated by
mAChR agonists. For example, administration of mAChR agonists into the rodent NAc reduced
reward seeking (161). However, this appears to be receptor dependent as selective blockade of M1
but not M4 enhances reward seeking and rescues antipsychotic-induced amotivation (162).

Despite reducing striatal dopamine release, preliminary trials of emraclidine and xanomeline
(M4 mAChR agonists; see Figure 2) have shown efficacy in the treatment of negative symptoms
in schizophrenia (163, 164). Cholinesterase inhibitors also reduce apathy in Alzheimer’s disease,
Parkinson’s disease, and Lewy body dementia (163, 165). However, to our knowledge, no study to
date in humans has examined the effects of manipulating specific cholinergic receptors on reward
processing.

Other Neurotransmitters

Glutamate is themost abundant excitatory neurotransmitter in the brain, andGABAergic medium
spiny neurons comprise 95% of all cells in the VS, receiving glutamatergic input from the cortex
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(166). Dysfunction in glutamate reuptake and recycling can cause excitotoxicity, which has been
proposed as a mechanism underlying neurodegenerative disorders (165).

Glutamate’s role in apathy is poorly understood; however, one study using proton magnetic
resonance spectroscopy in patients with schizophrenia found that reduced ACC glutamate was
associated with more negative symptoms (167). In healthy participants, a higher glutamine (a
metabolic precursor)-to-glutamate ratio within the VS predicted greater sustained effort exer-
tion and lower perceived effort (168). A metabolic account of glutamate accumulation driving
fatigue has recently been proposed. Preference for sooner, low-effort rewards following sustained
cognitive effort was associated with greater glutamate accumulation in the lateral PFC (169). The
authors concluded that glutamate accumulation makes cortical activation more costly, leading to
fatigue and a reduced willingness to exert effort (169). This possible neurometabolic consequence
of glutamate accumulation may also provide an explanation of the close association between
fatigue and apathy (170).

Neuronal projections from the VTA are typically considered dopaminergic, but the recent
discovery of combinatorial neurons that corelease dopamine with GABA has indicated a key
role for this neurotransmitter in motivation (171). Mouse studies have shown that VTA GABA-
transmitting neurons signal cues predicting the absence of reward (171), and VP GABA neurons
are crucial in high-risk motivated behavior, inducing conservative, risk-averse behavior when si-
lenced (172). Stimulation of GABAA receptors in the VP has also been shown to induce apathy,
partly mediated by the depletion of NAc dopamine (173). In patients with epilepsy, the use of
antiepileptics that potentiate GABA-mediated inhibitory neurotransmission is associated with in-
creased apathy (174), and a small study of patients with Alzheimer’s disease found that increased
plasma GABA correlated with higher apathy (175). However, to our knowledge, no studies have
examined the effects of GABAergic medication on the cognitive mechanisms underlying apathy.

Recreational cannabis use has long been associated with apathy (176), but the role of the en-
docannabinoid system in motivation is only just beginning to be understood (176). In rodents,
administration of cannabinoid-1 (CB1) receptor agonists into the ACC and OFC induces marked
apathy (177), and endogenous CB1 receptor agonists suppress dopaminergic activity in the NAc
and reward seeking (178).

In humans, a study of the effects of cannabinoids on effort-based decision making revealed
that19-tetrahydrocannabinol (THC), a CB1 receptor partial agonist, reduced willingness to exert
effort (179). Greater understanding of the precise mechanisms underlying the effects of cannabis
on motivation will enable insight into the therapeutic potential of endocannabinoid modulation
for apathy.

PHARMACOLOGICAL INTERVENTIONS

Repurposing Existing Treatments

Repurposed drugs have been used in the majority of randomized controlled trials (RCTs) relevant
to apathy, most of which examined it as a secondary outcome measure. A summary of double-
blind RCTs of pharmacological interventions to treat apathy across schizophrenia, Parkinson’s
disease, and dementia (Figures 2 and 3; Supplemental Table 1) highlights the more promising
and disappointing avenues of treatment tested to date.

For example, it appears that modafinil is an ineffective treatment for apathy, as all nine RCTs of
modafinil for apathy (eight of which were in schizophrenia) had null findings. Though modafinil
is a weak dopamine and noradrenaline reuptake inhibitor (Figure 2; Table 1), it has additional
histaminergic activity (196), indicating that sufficient concurrent modulation of dopaminergic and
noradrenergic systemsmay be needed for therapeutic efficacy. Similarly,most (9/14) trials of SSRIs
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Figure 3

Summary plot of transdiagnostic outcomes of double-blind, randomized, placebo-controlled trials of pharmacological interventions to
treat apathy in dementia, SCZ, and PD. Abbreviations: 5-HT, 5-hydroxytryptamine; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; mAChR, muscarinic acetylcholine receptor; mGluR, metabotropic glutamate receptor; NARI, noradrenaline
reuptake inhibitor; NASSA, noradrenaline and specific serotonergic antidepressant; NMDA,N-methyl-d-aspartate; PD, Parkinson’s
disease; SCZ, schizophrenia; SSRI, selective serotonin reuptake inhibitor.

for apathy have shown a lack of efficacy, a finding supported by cohort study data indicating that
SSRI treatment can exacerbate apathy (145).

In contrast, trials of methylphenidate suggest that it may be an effective treatment for apathy.
All five RCTs reported significant improvements in apathy (in Alzheimer’s and Parkinson’s dis-
eases). Methylphenidate is a potent noradrenaline and dopamine reuptake inhibitor (Figure 2;
Table 1), and the results of these trials support basic neuroscientific research showing that these
systems play a crucial role in the neurobiological mechanisms underlying motivation.

In Parkinson’s disease, dopamine agonists also appear to be clinically effective treatments
for apathy (6/7 positive trials). However, dopamine agonists have diverse receptor-binding pro-
files, and there have been no head-to-head trials to date (Figure 2) that could inform treatment
regimens and shed light on the mechanisms underlying motivation. In contrast to Parkinson’s dis-
ease, dopamine agonists appear to be ineffective for apathy in schizophrenia (1/4 positive trials),
suggesting that different mechanisms may be driving amotivational symptoms; or possibly the
concurrent use of antipsychotic medication may negate any therapeutic effect.

Cholinesterase inhibitors are currently utilized for their small but clinically meaningful
cognitive benefits in Alzheimer’s disease (199). However, most trial findings to date (11/14
positive) also support a therapeutic role for apathy. This finding is intriguing given the limited
neuroscientific research into the role of the cholinergic system in motivation compared to other
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Table 1 Summary of medications trialed as treatments for apathy and their mechanisms of action

Medication(s) Clinical indication(s) Mechanism of action
Tolcapone, opicapone,

entacapone
PD COMT inhibitors: COMT is a catecholamine-degrading enzyme.

Enzymatic degradation by COMT is the primary mechanism for
synaptic dopamine clearance in the prefrontal cortex. COMT
inhibitors increase cortical dopamine by inhibiting this key catabolic
pathway either directly within the brain (tolcapone) or peripherally
(180).

Rasagiline, selegiline PD MAO-B inhibitors: MAO-B inhibition in the brain principally reduces
the catabolism of dopamine (181).

Docosahexaenoic acid NA Omega-3 long-chain polyunsaturated fatty acid: Lipid-bound
docosahexaenoic acid is hypothesized to modulate neurotransmission
via modifying cell membrane fluidity (182).

Amantadine Antiviral, PD Originally an antiviral agent, amantadine increases striatal dopamine
biosynthesis and synaptic release and is a low-affinity noncompetitive
antagonist of NMDA receptors (183).

Valproate/valproic
acid

Epilepsy, mood stabilizer A simple branched-chained fatty acid, valproic acid inhibits GABA
transaminase from increasing levels in the central nervous system and
reducing high-frequency firing of neurons via voltage-gated sodium,
potassium, and calcium channel blockade (184).

Atomoxetine,
reboxetine

ADHD, mood disorders NARIs; atomoxetine also inhibits reuptake of dopamine within the
prefrontal cortex and is an NMDA receptor antagonist at clinical
doses (185).

Buspirone,
tandospirone

Dyskinesia, mood disorders These are 5-HT1A receptor partial agonists, weak 5-HT receptor
agonists, and weak antagonists at dopamine D2 autoreceptors (186).

Trazodone Insomnia, mood disorders Serotonin receptor antagonist and reuptake inhibitor: Trazodone is a
SERT inhibitor and 5-HT2 receptor antagonist (187). It is also a
weak antagonist at α1- and α2-adrenergic receptors and histamine H1

receptors.
Mirtazapine Mood disorders This noradrenergic and specific serotonergic antidepressant

antagonizes the adrenergic α2-autoreceptors and α2-heteroreceptors
as well as blocks 5-HT2 and 5-HT3 receptors (188).

Sertraline, citalopram,
fluoxetine

Mood disorders SSRIs: These have high affinity for SERT, inhibiting the reuptake of
5-HT. Most SSRIs also have weak affinity to the noradrenaline
transporter (189).

Memantine AD NMDA antagonist: Memantine is classified as an open channel blocker
because it can enter the NMDA receptor channel, blocking current
flow only after channel opening (190).

Ampakine (CX516),
mibampator

AD (phase II), SCZ (phase II) AMPA receptor agonists: Both mibampator and CX516 are positive
allosteric modulators of the AMPA receptor and enhance
depolarization by prolonging the channel opening in response to
glutamate (191).

N-acetyl cysteine Paracetamol overdose This is a glutathione precursor that is hypothesized to modulate
NMDA receptor activity by decreasing oxidizing agents that can bind
to the redox-sensitive NMDA receptor complexes (192).

LY4044039,
LY21240023

SCZ (phase II) These are selective agonists for metabotropic glutamate 2/3 (mGlu2/3)
receptors (193).

d-alanine, sarcosine SCZ (phase II) These are glycine transport inhibitors that increase the levels of the
NMDA receptor agonist glycine (194).

(Continued)
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Table 1 (Continued)

Medication(s) Clinical indication(s) Mechanism of action
d-serine,

d-cycloserine,
glycine

SCZ (phase II) These are glycine site agonists or partial agonists for the NMDA
receptor (195).

Modafinil Sleep disorders Several mechanisms of action: Modafinil is a modest potency inhibitor
of dopamine and noradrenaline transporters, potentiating dopamine
and noradrenaline neurotransmission, though in vitro studies suggest
this property is weaker than that of methylphenidate (196). In
addition, modafinil leads to significantly elevated extracellular
dopamine, noradrenaline, 5-HT, glutamate, and histamine levels and
decreased GABA levels, particularly in the neocortex (196).

Methylphenidate ADHD This is a high-affinity inhibitor of dopamine and NARIs (147).
Pramipexole,

ropinirole,
aripiprazole (low
dose)

PD These are dopamine agonists with variable affinity for D1, D2, and D3
receptors (96).

Istradefylline PD Istradefylline inhibits A2A receptors located in the striatum, preventing
A2A receptors from forming heterotetramers with D2 dopamine
receptors, therefore potentiating dopamine D2 agonism (197).

Emraclidine,
xanomeline

SCZ mAChR agonists: Presynaptic mAChRs can act as autoreceptors on
striatal cholinergic interneurons to inhibit acetylcholine release and
modulate local dopamine release (163).

Donepezil,
rivastigmine,
metrifonate

AD These are acetylcholinesterase inhibitors that lead to the accumulation
of acetylcholine and enhanced stimulation of postsynaptic cholinergic
receptors (198).

Abbreviations: A2A, adenosine 2A; AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; COMT, catechol-O-methyltransferase; GABA, γ-aminobutyric acid; mAChR, M4 muscarinic receptor; MAO-B, monoamine
oxidase type B; NA, not applicable; NARI, noradrenaline reuptake inhibitor; NMDA,N-methyl-d-aspartate; PD, Parkinson’s disease; SCZ, schizophrenia;
SERT, serotonin transporter; SSRI, selective serotonin reuptake inhibitor.

neurotransmitters. Further trials of cholinergic therapies for apathy are needed, particularly for
groups such as patients with schizophrenia, where dopaminergic therapies are limited by the risk
of exacerbating positive symptoms (hallucinations and delusions). Novel cholinergic agents such
as emraclidine (an M4 agonist) have already shown promise in treating negative symptoms and
offer more targeted means of modulating the cholinergic system (Figure 2).

Novel Treatments

A wide range of glutamatergic therapies have been tested for motivational symptoms in
schizophrenia, with largely disappointing results (Figure 3). However, recent investigations have
shown that ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid-acting
antidepressant effects and specifically improves motivation-related symptoms of depression, par-
ticularly anhedonia (200). Anhedonia and apathy might share some underlying cognitive and
neuralmechanisms (6), and recent evidence suggests that ketaminemay reversemotivation-related
reward-processing deficits (201) and rectify frontostriatal connectivity (202). No trials have been
conducted for apathy to date, but ketamine warrants further investigation as a potential treatment.

Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the treatment of
apathy in neurological conditions such as stroke, Parkinson’s disease, and mild cognitive impair-
ment (203).Though these have been small trials, targeting different brain regions (the dorsolateral
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Effort sensitivity:
the degree to which an
individual’s behavior is
discounted by the
effort costs of an
action

PFC and supplementary motor area), several studies have used fMRI to guide rTMS target iden-
tification for other conditions (204). In the future, utilizing effort-based decision-making tasks
while patients undergo fMRI may guide personalized rTMS targets for apathy based on network
connectivity, while accounting for anatomical variability.

Up to 15% of Parkinson’s patients are candidates for DBS, which is also now used in se-
vere psychiatric conditions, including obsessive compulsive disorder. Though most DBS studies
in Parkinson’s have reported worsened apathy after subthalamic nucleus DBS, other targets are
promising. For example, DBS of the VS in animal studies and in patients with severe depression
improves amotivational symptoms, and stimulation of the ACC induces a feeling of determina-
tion, highlighting its future potential for patients with Parkinson’s disease and apathy or severe,
treatment-resistant cases (205).

CONCLUSION

Apathy is a common and disabling syndrome that has poor long-term functional outcomes. Safe
and effective treatments for patients with the condition are desperately needed across neuropsy-
chiatric disorders. Conceptualizing apathy as a consequence of disruption to the component parts
of motivation (e.g., reward versus effort sensitivity) provides a framework to delineate transdi-
agnostic or disease-specific mechanisms of apathy and how they relate to complex changes in
neurotransmitter systems. Utilizing our rapidly developing understanding of the cognitive and
neural mechanisms of motivation from preclinical basic neuroscience studies will be crucial in
developing and refining targeted treatments for apathy.
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Aleksandra Slavković and Jeremy Seeman

Related Articles xi

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
02

4.
64

:3
13

-3
38

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
82

.2
6.

21
1.

16
6 

on
 0

2/
24

/2
4.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 


